Navigation

Map-Reduce Examples

In the mongo shell, the db.collection.mapReduce() method is a wrapper around the mapReduce command. The following examples use the db.collection.mapReduce() method:

Aggregation Pipeline as Alternative

Aggregation pipeline provides better performance and a more coherent interface than map-reduce.

Various map-reduce expressions can be rewritten using aggregation pipeline operators, such as $group, $merge, etc.

The example below includes aggregation pipeline alternatives.

Create a sample collection orders with the following documents:

db.orders.insertMany([
   { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
   { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
   { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
   { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:

  1. Define the map function to process each input document:

    • In the function, this refers to the document that the map-reduce operation is processing.
    • The function maps the price to the cust_id for each document and emits the cust_id and price pair.
    var mapFunction1 = function() {
       emit(this.cust_id, this.price);
    };
    
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.
    • The function reduces the valuesPrice array to the sum of its elements.
    var reduceFunction1 = function(keyCustId, valuesPrices) {
       return Array.sum(valuesPrices);
    };
    
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function.

    db.orders.mapReduce(
       mapFunction1,
       reduceFunction1,
       { out: "map_reduce_example" }
    )
    

    This operation outputs the results to a collection named map_reduce_example. If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.

  4. Query the map_reduce_example collection to verify the results:

    db.map_reduce_example.find().sort( { _id: 1 } )
    

    The operation returns the following documents:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
    

Aggregation Alternative

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:

db.orders.aggregate([
   { $group: { _id: "$cust_id", value: { $sum: "$price" } } },
   { $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field (See also $sum). The value field contains the total price for each cust_id.

    The stage output the following documents to the next stage:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
    
  2. Then, the $out writes the output to the collection agg_alternative_1. Alternatively, you could use $merge instead of $out.

  3. Query the agg_alternative_1 collection to verify the results:

    db.agg_alternative_1.find().sort( { _id: 1 } )
    

    The operation returns the following documents:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }
    

Calculate Order and Total Quantity with Average Quantity Per Item

In this example, you will perform a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01. The operation groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku. The operation then calculates the average quantity per order for each sku value and merges the results into the output collection. When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

  1. Define the map function to process each input document:

    • In the function, this refers to the document that the map-reduce operation is processing.
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku and value pair.
     var mapFunction2 = function() {
        for (var idx = 0; idx < this.items.length; idx++) {
           var key = this.items[idx].sku;
           var value = { count: 1, qty: this.items[idx].qty };
    
           emit(key, value);
        }
    };
    
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.
    var reduceFunction2 = function(keySKU, countObjVals) {
       reducedVal = { count: 0, qty: 0 };
    
       for (var idx = 0; idx < countObjVals.length; idx++) {
           reducedVal.count += countObjVals[idx].count;
           reducedVal.qty += countObjVals[idx].qty;
       }
    
       return reducedVal;
    };
    
  3. Define a finalize function with two arguments key and reducedVal. The function modifies the reducedVal object to add a computed field named avg and returns the modified object:

    var finalizeFunction2 = function (key, reducedVal) {
      reducedVal.avg = reducedVal.qty/reducedVal.count;
      return reducedVal;
    };
    
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions.

    db.orders.mapReduce(
       mapFunction2,
       reduceFunction2,
       {
         out: { merge: "map_reduce_example2" },
         query: { ord_date: { $gte: new Date("2020-03-01") } },
         finalize: finalizeFunction2
       }
     );
    

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it output the results to a collection map_reduce_example2.

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

  5. Query the map_reduce_example2 collection to verify the results:

    db.map_reduce_example2.find().sort( { _id: 1 } )
    

    The operation returns the following documents:

    { "_id" : "apples", "value" : { "count" : 3, "qty" : 30, "avg" : 10 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 6, "qty" : 58, "avg" : 9.666666666666666 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    

Aggregation Alternative

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:

db.orders.aggregate( [
   { $match: { ord_date: { $gte: new Date("2020-03-01") } } },
   { $unwind: "$items" },
   { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } }  },
   { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
   { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace",  whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").

  2. The $unwinds stage breaks down the document by the items array field to output a document for each array element. For example:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
    
  3. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the total qty ordered per each items.sku (See $sum).
    • The orders_ids array. The orders_ids field contains an array of distinct order _id’s for the items.sku (See $addToSet).
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
    
  4. The $project stage reshapes the output document to mirror the map-reduce’s output to have two fields _id and value. The $project sets:

    • the value.count to the size of the orders_ids array. (See $size.)
    • the value.qty to the qty field of input document.
    • the value.avg to the average number of qty per order. (See $divide and $size.)
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    
  5. Finally, the $merge writes the output to the collection agg_alternative_3. If an existing document has the same key _id as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

  6. Query the agg_alternative_3 collection to verify the results:

    db.agg_alternative_3.find().sort( { _id: 1 } )
    

    The operation returns the following documents:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }