

MongoDB Manual Contents

See About MongoDB Documentation for more information about the MongoDB Documentation
project, this Manual and additional editions of this text.

	Introduction

	Installation
	Install MongoDB Community Edition
	Install on Linux
	Install on Red Hat

	Install on Ubuntu

	Install on Debian

	Install on SUSE

	Install on Amazon

	Install on macOS

	Install on Windows

	Install MongoDB Enterprise
	Install on Linux
	Install on Red Hat

	Install on Ubuntu

	Install on Debian

	Install on SUSE

	Install on Amazon

	Install on macOS

	Install on Windows

	Install with Docker

	Upgrade MongoDB Community to MongoDB Enterprise
	Upgrade to MongoDB Enterprise (Standalone)

	Upgrade to MongoDB Enterprise (Replica Set)

	Upgrade to MongoDB Enterprise (Sharded Cluster)

	Verify Integrity of MongoDB Packages

	The mongo Shell
	Configure the mongo Shell

	Access the mongo Shell Help

	Write Scripts for the mongo Shell

	Data Types in the mongo Shell

	mongo Shell Quick Reference

	MongoDB CRUD Operations

	Aggregation
	Aggregation Pipeline

	Map-Reduce
	Map-Reduce and Sharded Collections

	Map-Reduce Concurrency

	Map-Reduce Examples

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Aggregation Reference
	Aggregation Pipeline Quick Reference

	Aggregation Commands

	Aggregation Commands Comparison

	Variables in Aggregation Expressions

	SQL to Aggregation Mapping Chart

	Data Models
	Data Modeling Introduction

	Schema Validation

	Data Modeling Concepts
	Data Model Design

	Operational Factors and Data Models

	Data Model Examples and Patterns
	Model Relationships Between Documents
	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Tree Structures
	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

	Model Specific Application Contexts
	Model Data for Atomic Operations

	Model Data to Support Keyword Search

	Model Monetary Data

	Model Time Data

	Data Model Reference
	Database References

	Transactions

	Indexes

	Security

	Change Streams

	Replication

	Sharding
	Sharded Cluster Components
	Shards

	Config Servers (metadata)

	Router (mongos)

	Shard Keys

	Hashed Sharding

	Ranged Sharding

	Zones
	Manage Shard Zones

	Segmenting Data by Location

	Tiered Hardware for Varying SLA or SLO

	Segmenting Data by Application or Customer

	Distributed Local Writes for Insert Only Workloads

	Data Partitioning with Chunks
	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Balancer
	Manage Sharded Cluster Balancer

	Migrate Chunks in a Sharded Cluster

	Administration
	Config Server Administration
	Replace a Config Server

	View Cluster Configuration

	Migrate a Sharded Cluster to Different Hardware

	Add Shards to a Cluster

	Remove Shards from an Existing Sharded Cluster

	Clear jumbo Flag

	Back Up Cluster Metadata

	Convert Sharded Cluster to Replica Set

	Convert a Replica Set to a Sharded Cluster

	Convert a Shard Standalone to a Shard Replica Set

	Sharding Reference
	Operational Restrictions

	Troubleshoot Sharded Clusters

	Config Database

	Administration

	Storage
	Storage Engines
	WiredTiger Storage Engine

	MMAPv1 Storage Engine

	In-Memory Storage Engine

	Journaling

	GridFS

	FAQ: MongoDB Storage

	Frequently Asked Questions
	FAQ: MongoDB Fundamentals

	FAQ: Indexes

	FAQ: Concurrency

	FAQ: Sharding with MongoDB

	FAQ: Replication and Replica Sets

	FAQ: MongoDB Storage

	FAQ: MongoDB Diagnostics

	Reference
	Operators
	Query and Projection Operators

	Update Operators

	Aggregation Pipeline Stages
	$addFields (aggregation)

	$bucket (aggregation)

	$bucketAuto (aggregation)

	$collStats (aggregation)

	$count (aggregation)

	$currentOp (aggregation)

	$facet (aggregation)

	$geoNear (aggregation)

	$graphLookup (aggregation)

	$group (aggregation)

	$indexStats (aggregation)

	$limit (aggregation)

	$listLocalSessions

	$listSessions

	$lookup (aggregation)

	$match (aggregation)

	$out (aggregation)

	$project (aggregation)

	$redact (aggregation)

	$replaceRoot (aggregation)

	$sample (aggregation)

	$skip (aggregation)

	$sort (aggregation)

	$sortByCount (aggregation)

	$unwind (aggregation)

	Aggregation Pipeline Operators
	$abs (aggregation)

	$add (aggregation)

	$addToSet (aggregation)

	$allElementsTrue (aggregation)

	$and (aggregation)

	$anyElementTrue (aggregation)

	$arrayElemAt (aggregation)

	$arrayToObject (aggregation)

	$avg (aggregation)

	$ceil (aggregation)

	$cmp (aggregation)

	$concat (aggregation)

	$concatArrays (aggregation)

	$cond (aggregation)

	$convert (aggregation)

	$dateFromParts (aggregation)

	$dateToParts (aggregation)

	$dateFromString (aggregation)

	$dateToString (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$dayOfYear (aggregation)

	$divide (aggregation)

	$eq (aggregation)

	$exp (aggregation)

	$filter (aggregation)

	$first (aggregation)

	$floor (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$hour (aggregation)

	$ifNull (aggregation)

	$in (aggregation)

	$indexOfArray (aggregation)

	$indexOfBytes (aggregation)

	$indexOfCP (aggregation)

	$isArray (aggregation)

	$isoDayOfWeek (aggregation)

	$isoWeek (aggregation)

	$isoWeekYear (aggregation)

	$last (aggregation)

	$let (aggregation)

	$literal (aggregation)

	$ln (aggregation)

	$log (aggregation)

	$log10 (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ltrim (aggregation)

	$map (aggregation)

	$max (aggregation)

	$mergeObjects (aggregation)

	$meta (aggregation)

	$min (aggregation)

	$millisecond (aggregation)

	$minute (aggregation)

	$mod (aggregation)

	$month (aggregation)

	$multiply (aggregation)

	$ne (aggregation)

	$not (aggregation)

	$objectToArray (aggregation)

	$or (aggregation)

	$pow (aggregation)

	$push (aggregation)

	$range (aggregation)

	$reduce (aggregation)

	$reverseArray (aggregation)

	$rtrim (aggregation)

	$second (aggregation)

	$setDifference (aggregation)

	$setEquals (aggregation)

	$setIntersection (aggregation)

	$setIsSubset (aggregation)

	$setUnion (aggregation)

	$size (aggregation)

	$slice (aggregation)

	$split (aggregation)

	$sqrt (aggregation)

	$stdDevPop (aggregation)

	$stdDevSamp (aggregation)

	$strcasecmp (aggregation)

	$strLenBytes (aggregation)

	$strLenCP (aggregation)

	$substr (aggregation)

	$substrBytes (aggregation)

	$substrCP (aggregation)

	$subtract (aggregation)

	$sum (aggregation)

	$switch (aggregation)

	$toBool (aggregation)

	$toDate (aggregation)

	$toDecimal (aggregation)

	$toDouble(aggregation)

	$toInt (aggregation)

	$toLong (aggregation)

	$toObjectId (aggregation)

	$toString (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

	$trim (aggregation)

	$trunc (aggregation)

	$type (aggregation)

	$week (aggregation)

	$year (aggregation)

	$zip (aggregation)

	Query Modifiers
	$comment

	$explain

	$hint

	$maxScan

	$max

	$maxTimeMS

	$min

	$orderby

	$query

	$returnKey

	$showDiskLoc

	$natural

	Database Commands

	mongo Shell Methods

	MongoDB Package Components
	mongod

	mongos

	mongo

	mongod.exe

	mongos.exe

	mongodump

	mongorestore

	bsondump

	mongoimport

	mongoexport

	mongostat

	mongotop

	mongoreplay

	mongoldap

	mongofiles

	install_compass

	Configuration File Options

	MongoDB Server Parameters

	MongoDB Limits and Thresholds

	Explain Results

	System Collections

	Connection String URI Format

	Collation

	MongoDB Wire Protocol

	Log Messages

	Exit Codes and Statuses

	Glossary

	Default MongoDB Port

	Server Sessions

	Release Notes
	Release Notes for MongoDB 4.0
	Compatibility Changes in MongoDB 4.0

	Upgrade a Standalone to 4.0

	Upgrade a Replica Set to 4.0

	Upgrade a Sharded Cluster to 4.0

	Downgrade 4.0 Standalone to 3.6

	Downgrade 4.0 Replica Set to 3.6

	Downgrade 4.0 Sharded Cluster to 3.6

	4.0 Changelog

	Release Notes for MongoDB 3.6
	3.6 Changelog

	Compatibility Changes in MongoDB 3.6

	Upgrade a Standalone to 3.6

	Upgrade a Replica Set to 3.6

	Upgrade a Sharded Cluster to 3.6

	Downgrade 3.6 Standalone to 3.4

	Downgrade 3.6 Replica Set to 3.4

	Downgrade 3.6 Sharded Cluster to 3.4

	Release Notes for MongoDB 3.4
	3.4 Changelog

	Compatibility Changes in MongoDB 3.4

	Upgrade a Standalone to 3.4

	Upgrade a Replica Set to 3.4

	Upgrade a Sharded Cluster to 3.4

	Downgrade MongoDB 3.4 to 3.2
	Downgrade 3.4 Standalone to 3.2

	Downgrade 3.4 Replica Set to 3.2

	Downgrade 3.4 Sharded Cluster to 3.2

	Release Notes for MongoDB 3.2
	3.2 Changelog

	Compatibility Changes in MongoDB 3.2
	JavaScript Changes in MongoDB 3.2

	Upgrade MongoDB to 3.2

	Downgrade MongoDB from 3.2

	Release Notes for MongoDB 3.0
	3.0 Changelog

	Compatibility Changes in MongoDB 3.0

	Upgrade MongoDB to 3.0

	Upgrade to SCRAM

	Downgrade MongoDB from 3.0

	Release Notes for MongoDB 2.6
	2.6 Changelog

	Compatibility Changes in MongoDB 2.6

	Upgrade MongoDB to 2.6

	Upgrade User Authorization Data to 2.6 Format

	Downgrade MongoDB from 2.6

	Release Notes for MongoDB 2.4
	2.4 Changelog

	JavaScript Changes in MongoDB 2.4

	Upgrade MongoDB to 2.4

	Compatibility and Index Type Changes in MongoDB 2.4

	Release Notes for MongoDB 2.2

	Release Notes for MongoDB 2.0

	Release Notes for MongoDB 1.8

	Release Notes for MongoDB 1.6

	Release Notes for MongoDB 1.4

	Release Notes for MongoDB 1.2.x

Introduction to MongoDB

On this page

	Document Database

	Key Features

MongoDB is an open-source document database that provides high
performance, high availability, and automatic scaling.

Document Database

A record in MongoDB is a document, which is a data structure composed
of field and value pairs. MongoDB documents are similar to JSON
objects. The values of fields may include other documents, arrays,
and arrays of documents.

[image: A MongoDB document.]

The advantages of using documents are:

	Documents (i.e. objects) correspond to native data types in
many programming languages.

	Embedded documents and arrays reduce need for expensive joins.

	Dynamic schema supports fluent polymorphism.

Key Features

High Performance

MongoDB provides high performance data persistence. In particular,

	Support for embedded data models reduces I/O activity on database
system.

	Indexes support faster queries and can include keys from embedded
documents and arrays.

Rich Query Language

MongoDB supports a rich query language to support read and write
operations (CRUD) as well as:

	Data Aggregation

	Text Search and Geospatial Queries.

High Availability

MongoDB’s replication facility, called replica set, provides:

	automatic failover and

	data redundancy.

A replica set is a group of
MongoDB servers that maintain the same data set, providing redundancy
and increasing data availability.

Horizontal Scalability

MongoDB provides horizontal scalability as part of its core
functionality:

	Sharding distributes data across a
cluster of machines.

	Starting in 3.4, MongoDB supports creating zones of data based on the shard key. In a
balanced cluster, MongoDB directs reads and writes covered by a zone
only to those shards inside the zone. See the Zones
manual page for more information.

Support for Multiple Storage Engines

MongoDB supports multiple storage engines:

	WiredTiger Storage Engine (including support for
Encryption at Rest)

	In-Memory Storage Engine

	MMAPv1 Storage Engine (Deprecated in MongoDB 4.0)

In addition, MongoDB provides pluggable storage engine API that allows
third parties to develop storage engines for MongoDB.

Install MongoDB

On this page

	Supported Platforms

	x86_64

	ARM64

	PPC64LE (MongoDB Enterprise Edition)

	s390x

	Tutorials

	MongoDB Community Edition

	MongoDB Enterprise

	Upgrade Community Edition to Enterprise Edition

	Additional Resources

MongoDB is released as two editions: Community and Enterprise.
Community is the open source release of MongoDB. Enterprise provides
additional administration, authentication, and monitoring features.
Installation steps vary depending on the edition; both procedures are
outlined in this section.

For upgrade instructions, see Upgrade Procedures instead.

Note

New in version 3.6: Each MongoDB installer is packaged with a platform-specific
MongoDB Compass [https://docs.mongodb.com/compass/current/#compass-index] installation script. This
script installs MongoDB Compass as part of the MongoDB Server
installation process.

Supported Platforms

Changed in version 3.4: MongoDB no longer supports 32-bit x86 platforms.

x86_64

Platform Support EOL Notice

	Support for SLES 11 has been removed in MongoDB 3.2.20+, 3.4.15+, and 3.6.4+.

	Support for Ubuntu 12.04 has been removed in MongoDB 3.2.20+, 3.4.15+, and 3.6.4+.

	Support for Debian 7 has been removed in MongoDB 3.2.21+, 3.4.16+, 3.6.6+, and 4.0+.

Platform Support Upcoming EOL Notice

In future releases, MongoDB will end support for the following
platforms:

	Windows 7/2008R2

	Windows 8/2012

	Windows 8.1/2012R2

	Ubuntu 14.04

	Platform

	4.0 Community & Enterprise

	3.6 Community & Enterprise

	3.4 Community & Enterprise

	3.2 Community & Enterprise

	Amazon Linux 2013.03 and later

	✓

	✓

	✓

	✓

	Amazon Linux 2

	✓

	
	
	

	Debian 7

	
	EOL’d as of 3.6.6

	EOL’d as of 3.4.16

	EOL’d as of 3.2.21

	Debian 8

	✓

	✓

	✓

	✓

	Debian 9

	✓

	3.6.5 and later

	
	

	RHEL/CentOS 6.2 and later

	✓

	✓

	✓

	✓

	RHEL/CentOS 7.0 and later

	✓

	✓

	✓

	✓

	SLES 11

	
	EOL’d as of 3.6.4

	EOL’d as of 3.4.15

	EOL’d as of 3.2.20

	SLES 12

	✓

	✓

	✓

	

	Solaris 11 64-bit

	
	
	Community only

	Community only

	Ubuntu 12.04

	
	EOL’d as of 3.6.4

	EOL’d as of 3.4.15

	EOL’d as of 3.2.20

	Ubuntu 14.04

	✓

	✓

	✓

	✓

	Ubuntu 16.04

	✓

	✓

	✓

	✓

	Ubuntu 18.04

	✓

	
	
	

	Windows Vista

	
	
	✓

	✓

	Windows 7/Server 2008 R2

	✓

	✓

	✓

	✓

	Windows 8/2012 R2 and later

	✓

	
	
	

	macOS 10.11 and later

	✓

	✓

	✓

	✓

ARM64

	Platform

	4.0 Community & Enterprise

	3.6 Community & Enterprise

	3.4 Community & Enterprise

	Ubuntu 16.04

	✓

	✓

	✓

PPC64LE (MongoDB Enterprise Edition)

	Platform

	4.0 Enterprise

	3.6 Enterprise

	3.4 Enterprise

	RHEL/CentOS 7

	✓

	✓

	✓

	Ubuntu 16.04

	✓

	✓

	✓

s390x

	Platform

	4.0 Community & Enterprise

	3.6 Enterprise

	3.4 Enterprise

	RHEL/CentOS 6

	✓

	
	

Tutorials

MongoDB Community Edition

	Install on Linux

	Install MongoDB Community Edition and required dependencies on
Linux.

	Install on macOS

	Install MongoDB Community Edition on macOS systems from Homebrew
packages or from MongoDB archives.

	Install on Windows

	Install MongoDB Community Edition on Windows systems and
optionally start MongoDB as a Windows service.

MongoDB Enterprise

	Install on Linux

	Install the official builds of MongoDB Enterprise on Linux-based
systems.

	Install on macOS

	Install the official build of MongoDB Enterprise on macOS

	Install on Windows

	Install MongoDB Enterprise on Windows using the .msi
installer.

	Install with Docker

	Install a MongoDB Enterprise Docker container.

	Install MongoDB Community Edition
	Install on Linux
	Install on Red Hat

	Install on Ubuntu

	Install on Debian

	Install on SUSE

	Install on Amazon

	Install on macOS

	Install on Windows

	Install MongoDB Enterprise
	Install on Linux
	Install on Red Hat

	Install on Ubuntu

	Install on Debian

	Install on SUSE

	Install on Amazon

	Install on macOS

	Install on Windows

	Install with Docker

Upgrade Community Edition to Enterprise Edition

	Upgrade MongoDB Community to MongoDB Enterprise
	Upgrade to MongoDB Enterprise (Standalone)

	Upgrade to MongoDB Enterprise (Replica Set)

	Upgrade to MongoDB Enterprise (Sharded Cluster)

	Verify Integrity of MongoDB Packages

Additional Resources

	MongoDB Atlas [https://www.mongodb.com/cloud/atlas?jmp=docs]: A cloud-hosted database service for running, monitoring, and maintaining MongoDB deployments.

	Install MongoDB using MongoDB Cloud Manager [https://docs.cloudmanager.mongodb.com/tutorial/getting-started?jmp=docs]

	Create a New MongoDB Deployment with Ops Manager [https://docs.opsmanager.mongodb.com/current/tutorial/nav/management]: Ops Manager is an on-premise
solution available in MongoDB Enterprise Advanced [https://www.mongodb.com/products/mongodb-enterprise-advanced?jmp=docs].

	MongoDB CRUD Operations

	Data Models

The mongo Shell

On this page

	Start the mongo Shell and Connect to MongoDB

	Working with the mongo Shell

	Tab Completion and Other Keyboard Shortcuts

	.mongorc.js File

	Exit the Shell

The mongo shell is an interactive JavaScript interface to
MongoDB. You can use the mongo shell to query and update
data as well as perform administrative operations.

The mongo shell is a component of the MongoDB
distributions [https://www.mongodb.com/download-center?jmp=docs#production]. Once
you have installed and have started MongoDB,
connect the mongo shell to your running MongoDB instance.

Start the mongo Shell and Connect to MongoDB

Prerequisites

Ensure that MongoDB is running before attempting to start the
mongo shell.

Open a terminal window (or a command prompt for Windows) and go to your
<mongodb installation dir>/bin directory:

copy

cd <mongodb installation dir>/bin

Tip

Adding your <mongodb installation dir>/bin to the PATH
environment variable allows you to type mongo instead of having
to go to the <mongodb installation dir>/bin directory or specify
the full path to the binary.

Local MongoDB Instance on Default Port

You can run mongo shell without any command-line options
to connect to a MongoDB instance
running on your localhost with default port 27017:

copy

mongo

Local MongoDB Instance on a Non-default Port

To explicitly specify the port, include the --port command-line option. For example, to connect to a MongoDB
instance running on localhost with a non-default port 28015:

copy

mongo --port 28015

MongoDB Instance on a Remote Host

To explicitly specify the hostname and/or port,

	You can specify a connection string. For example, to connect to a MongoDB
instance running on a remote host machine:

copy

mongo mongodb://mongodb0.example.com:28015

	You can use the command-line option --host <host>:<port>. For example, to connect to a MongoDB instance
running on a remote host machine:

copy

mongo --host mongodb0.example.com:28015

	You can use the --host <host> and
--port <port> command-line options. For
example, to connect to a MongoDB instance running on a remote host
machine:

copy

mongo --host mongodb0.example.com --port 28015

MongoDB Instance with Authentication

To connect to a MongoDB instance requires authentication:

	You can specify the username, authentication database, and optionally
the password in the connection string. For example, to connect and
authenticate to a remote MongoDB instance as user alice:

Note

If you do not specify the password in the connection string, the
shell will prompt for the password.

copy

mongo --host mongodb://alice@mongodb0.examples.com:28015/?authSource=admin

	You can use the --username <user> and
--password,
--authenticationDatabase <db> command-line options. For example, to
connect and authenticate to a remote MongoDB instance as user
alice:

Note

If you specify --password without the user’s password, the
shell will prompt for the password.

copy

mongo --username alice --password --authenticationDatabase admin --host mongodb0.examples.com --port 28015

Connect to a MongoDB Replica Set

To connect to a replica set:

	You can specify the replica set name and members in the
connection string.

copy

mongo mongodb://mongodb0.example.com.local:27017,mongodb1.example.com.local:27017,mongodb2.example.com.local:27017/?replicaSet=replA

	If using the DNS Seedlist Connection Format, you can specify the
connection string:

copy

mongo "mongodb+srv://server.example.com/"

Note

Use of the +srv connection string modifier automatically sets
the ssl option to true for the connection.

	You can specify the replica set name and members from the
--host <replica set
name>/<host1>:<port1>,<host2>:<port2>,...
command-line option. For example, to connect to replica set named
replA:

copy

mongo --host replA/mongodb0.example.com.local:27017,mongodb1.example.com.local:27017,mongodb2.example.com.local:27017

TLS/SSL Connection

For TLS/SSL connections,

	You can specify the ssl=true option in the
connection string.

copy

mongo mongodb://mongodb0.example.com.local:27017,mongodb1.example.com.local:27017,mongodb2.example.com.local:27017/?replicaSet=replA&ssl=true

	If using the DNS Seedlist Connection Format, you can include the
+srv connection string modifier:

copy

mongo "mongodb+srv://server.example.com/"

Note

Use of the +srv connection string modifier automatically sets
the ssl option to true for the connection.

	You can specify --ssl command-line option.
For example, to connect to replica set named replA:

copy

mongo --ssl --host replA/mongodb0.example.com.local:27017,mongodb1.example.com.local:27017,mongodb2.example.com.local:27017

See also

For more information on the options used in the connection examples
as well as other options, see mongo reference and examples of starting up mongo.

Working with the mongo Shell

To display the database you are using, type db:

copy

db

The operation should return test, which is the default database.
To switch databases, issue the use <db> helper, as in the
following example:

copy

use <database>

To list the available databases, use the helper show dbs. See also
db.getSiblingDB() method to access a different database from
the current database without switching your current database context
(i.e. db).

You can switch to non-existing databases. When you first store data in
the database, such as by creating a collection, MongoDB creates the
database. For example, the following creates both the database
myNewDatabase and the collection myCollection during
the insertOne() operation:

copy

use myNewDatabase
db.myCollection.insertOne({ x: 1 });

The db.myCollection.insertOne() is one
of the methods available in the mongo shell.

	db refers to the current database.

	myCollection is the name of the collection.

If the mongo shell does not accept the name of a collection,
you can use the alternative db.getCollection() syntax.
For instance, if a collection name contains a space or hyphen, starts
with a number, or conflicts with a built-in function:

copy

db.getCollection("3 test").find()
db.getCollection("3-test").find()
db.getCollection("stats").find()

The mongo shell prompt has a limit of 4095 codepoints for
each line. If you enter a line with more than 4095 codepoints, the
shell will truncate it.

For more documentation of basic MongoDB operations in the
mongo shell, see:

	Getting Started Guide [https://docs.mongodb.com/getting-started/shell]

	Insert Documents

	Query Documents

	Update Documents

	Delete Documents

	mongo Shell Methods

Format Printed Results

The db.collection.find() method returns a cursor to
the results; however, in the mongo shell, if the returned
cursor is not assigned to a variable using the var keyword, then
the cursor is automatically iterated up to 20 times to print up to the
first 20 documents that match the query. The mongo shell
will prompt Type it to iterate another 20 times.

To format the printed result, you can add the .pretty() to the
operation, as in the following:

copy

db.myCollection.find().pretty()

In addition, you can use the following explicit print methods in the
mongo shell:

	print() to print without formatting

	print(tojson(<obj>)) to print with JSON formatting and
equivalent to printjson()

	printjson() to print with JSON formatting and equivalent
to print(tojson(<obj>))

For more information and examples on cursor handling in the
mongo shell, see Iterate a Cursor in the mongo Shell. See also
Cursor Help for list of cursor help in the
mongo shell.

Multi-line Operations in the mongo Shell

If you end a line with an open parenthesis ('('), an open brace
('{'), or an open bracket ('['), then the subsequent lines start
with ellipsis ("...") until you enter the corresponding closing
parenthesis (')'), the closing brace ('}') or the closing
bracket (']'). The mongo shell waits for the closing
parenthesis, closing brace, or the closing bracket before evaluating
the code, as in the following example:

copy

> if (x > 0) {
... count++;
... print (x);
... }

You can exit the line continuation mode if you enter two blank
lines, as in the following example:

copy

> if (x > 0
...
...
>

Tab Completion and Other Keyboard Shortcuts

The mongo shell supports keyboard shortcuts. For example,

	Use the up/down arrow keys to scroll through command history. See
.dbshell documentation for more
information on the .dbshell file.

	Use <Tab> to autocomplete or to list the completion
possibilities, as in the following example which uses <Tab> to
complete the method name starting with the letter 'c':

copy

db.myCollection.c<Tab>

Because there are many collection methods starting with the letter
'c', the <Tab> will list the various methods that start with
'c'.

For a full list of the shortcuts, see Shell Keyboard Shortcuts

.mongorc.js File

When starting, mongo checks the user’s HOME
directory for a JavaScript file named .mongorc.js. If found, mongo interprets the
content of .mongorc.js before displaying the prompt for the
first time. If you use the shell to evaluate a JavaScript file or
expression, either by using the --eval
option on the command line or by specifying a .js file to
mongo, mongo will read the
.mongorc.js file after the JavaScript has finished processing.
You can prevent .mongorc.js from being loaded by using the
--norc option.

Exit the Shell

To exit the shell, type quit() or use the <Ctrl-C> shortcut.

See also

	Getting Started Guide [https://docs.mongodb.com/getting-started/shell]

	mongo Reference Page

	Configure the mongo Shell

	Access the mongo Shell Help

	Write Scripts for the mongo Shell

	Data Types in the mongo Shell

	mongo Shell Quick Reference

MongoDB CRUD Operations

On this page

	Create Operations

	Read Operations

	Update Operations

	Delete Operations

	Bulk Write

CRUD operations create, read, update, and delete
documents.

Create Operations

Create or insert operations add new documents to a collection. If the
collection does not currently exist, insert operations will create the
collection.

MongoDB provides the following methods to insert documents into a
collection:

	db.collection.insertOne() New in version 3.2

	db.collection.insertMany() New in version 3.2

In MongoDB, insert operations target a single collection. All
write operations in MongoDB are atomic on the level of a single
document.

[image: The components of a MongoDB insertOne operations.]

For examples, see Insert Documents.

Read Operations

Read operations retrieves documents from a
collection; i.e. queries a collection for
documents. MongoDB provides the following methods to read documents from
a collection:

	db.collection.find()

You can specify query filters or criteria that identify the documents to return.

[image: The components of a MongoDB find operation.]

For examples, see:

	Query Documents

	Query on Embedded/Nested Documents

	Query an Array

	Query an Array of Embedded Documents

Update Operations

Update operations modify existing documents in a collection. MongoDB
provides the following methods to update documents of a collection:

	db.collection.updateOne() New in version 3.2

	db.collection.updateMany() New in version 3.2

	db.collection.replaceOne() New in version 3.2

In MongoDB, update operations target a single collection. All write
operations in MongoDB are atomic on the level of a single document.

You can specify criteria, or filters, that identify the documents to
update. These filters use the same
syntax as read operations.

[image: The components of a MongoDB updateMany operation.]

For examples, see Update Documents.

Delete Operations

Delete operations remove documents from a collection. MongoDB provides
the following methods to delete documents of a collection:

	db.collection.deleteOne() New in version 3.2

	db.collection.deleteMany() New in version 3.2

In MongoDB, delete operations target a single collection. All
write operations in MongoDB are atomic on the level of a single document.

You can specify criteria, or filters, that identify the documents to
remove. These filters use the same
syntax as read operations.

[image: The components of a MongoDB deleteMany operation.]

For examples, see Delete Documents.

Bulk Write

MongoDB provides the ability to perform write operations in bulk. For
details, see Bulk Write Operations.

Text Search

On this page

	Overview

	Example

	Language Support

Overview

MongoDB supports query operations that perform a text search of string
content. To perform text search, MongoDB uses a
text index and the $text operator.

Note

Views do not support text search.

Example

This example demonstrates how to build a text index and use it to find
coffee shops, given only text fields.

Create a collection stores with the following documents:

copy

db.stores.insert(
 [
 { _id: 1, name: "Java Hut", description: "Coffee and cakes" },
 { _id: 2, name: "Burger Buns", description: "Gourmet hamburgers" },
 { _id: 3, name: "Coffee Shop", description: "Just coffee" },
 { _id: 4, name: "Clothes Clothes Clothes", description: "Discount clothing" },
 { _id: 5, name: "Java Shopping", description: "Indonesian goods" }
]
)

Text Index

MongoDB provides text indexes to support
text search queries on string content. text indexes can include any
field whose value is a string or an array of string elements.

To perform text search queries, you must have a
text index on your collection. A collection can only have one
text search index, but that index can cover multiple fields.

For example you can run the following in a mongo shell to
allow text search over the name and description fields:

copy

db.stores.createIndex({ name: "text", description: "text" })

$text Operator

Use the $text query operator to perform text searches on a
collection with a text index.

$text will tokenize the search string using whitespace and most
punctuation as delimiters, and perform a logical OR of all such
tokens in the search string.

For example, you could use the following query to find all stores
containing any terms from the list “coffee”, “shop”, and “java”:

copy

db.stores.find({ $text: { $search: "java coffee shop" } })

Exact Phrase

You can also search for exact phrases by wrapping them in double-quotes.
For example, the following will find all documents containing “java” or
“coffee shop”:

copy

db.stores.find({ $text: { $search: "java \"coffee shop\"" } })

Term Exclusion

To exclude a word, you can prepend a “-” character. For example, to
find all stores containing “java” or “shop” but not “coffee”, use the
following:

copy

db.stores.find({ $text: { $search: "java shop -coffee" } })

Sorting

MongoDB will return its results in unsorted order by default. However,
text search queries will compute a relevance score for each document
that specifies how well a document matches the query.

To sort the results in order of relevance score, you must explicitly
project the $meta textScore field and sort on it:

copy

db.stores.find(
 { $text: { $search: "java coffee shop" } },
 { score: { $meta: "textScore" } }
).sort({ score: { $meta: "textScore" } })

Text search is also available in the aggregation pipeline.

Language Support

MongoDB supports text search for various languages. See
Text Search Languages for a list of supported
languages.

Geospatial Queries

On this page

	Geospatial Data

	Geospatial Indexes

	Geospatial Queries

	Geospatial Models

	Example

MongoDB supports query operations on geospatial data. This section
introduces MongoDB’s geospatial features.

Geospatial Data

In MongoDB, you can store geospatial data as GeoJSON objects or as legacy coordinate pairs.

GeoJSON Objects

To calculate geometry over an Earth-like sphere, store your location
data as GeoJSON objects.

To specify GeoJSON data, use an embedded document with:

	a field named type that specifies the GeoJSON object
type and

	a field named coordinates that specifies the object’s
coordinates.

If specifying latitude and longitude coordinates, list the
longitude first and then latitude:

	Valid longitude values are between -180 and 180, both
inclusive.

	Valid latitude values are between -90 and 90 (both
inclusive).

copy

<field>: { type: <GeoJSON type> , coordinates: <coordinates> }

For example, to specify a GeoJSON Point:

copy

location: {
 type: "Point",
 coordinates: [-73.856077, 40.848447]
}

For a list of the GeoJSON objects supported in MongoDB as well as
examples, see GeoJSON objects.

MongoDB geospatial queries on GeoJSON objects calculate on a sphere;
MongoDB uses the WGS84 reference system for geospatial
queries on GeoJSON objects.

Legacy Coordinate Pairs

To calculate distances on a Euclidean plane, store your location data
as legacy coordinate pairs and use a 2d index. MongoDB
supports spherical surface calculations on legacy coordinate pairs via
a 2dsphere index by converting the data to the GeoJSON Point
type.

To specify data as legacy coordinate pairs, you can use either an
array (preferred) or an embedded document.

	Specify via an array (Preferred):

	

copy

<field>: [<x>, <y>]

If specifying latitude and longitude coordinates, list the
longitude first and then latitude; i.e.

copy

<field>: [<longitude>, <latitude>]

If specifying latitude and longitude coordinates, list the
longitude first and then latitude:

	Valid longitude values are between -180 and 180, both
inclusive.

	Valid latitude values are between -90 and 90 (both
inclusive).

	Specify via an embedded document:

	

copy

<field>: { <field1>: <x>, <field2>: <y> }

If specifying latitude and longitude coordinates, the first field,
regardless of the field name, must contains the longitude value
and the second field, the latitude value ; i.e.

copy

<field>: { <field1>: <longitude>, <field2>: <latitude> }

	Valid longitude values are between -180 and 180, both
inclusive.

	Valid latitude values are between -90 and 90 (both
inclusive).

To specify legacy coordinate pairs, arrays are preferred over an
embedded document as some languages do not guarantee associative map
ordering.

Geospatial Indexes

MongoDB provides the following geospatial index types to support the
geospatial queries.

2dsphere

2dsphere indexes support queries that calculate
geometries on an earth-like sphere.

To create a 2dsphere index, use the
db.collection.createIndex() method and specify the string
literal "2dsphere" as the index type:

copy

db.collection.createIndex({ <location field> : "2dsphere" })

where the <location field> is a field whose value is either a
GeoJSON object or a legacy
coordinates pair.

For more information on the 2dsphere index, see
2dsphere Indexes.

2d

2d indexes support queries that calculate
geometries on a two-dimensional plane.
Although the index can support $nearSphere queries that
calculate on a sphere, if possible, use the 2dsphere index
for spherical queries.

To create a 2d index, use the db.collection.createIndex()
method, specifying the location field as the key and the string literal
"2d" as the index type:

copy

db.collection.createIndex({ <location field> : "2d" })

where the <location field> is a field whose value is a legacy
coordinates pair.

For more information on the 2d index, see 2d Indexes.

Geospatial Indexes and Sharded Collections

You cannot use a geospatial index as a shard key when sharding a
collection. However, you can create a geospatial index
on a sharded collection by using a different field as the shard key.

The following geospatial operations are supported on sharded
collections:

	$geoNear aggregation stage

	$near and $nearSphere query operators (starting in MongoDB 4.0)

	geoNear command (deprecated in MongoDB 4.0)

Starting in MongoDB 4.0, $near and $nearSphere queries are supported for
sharded collections.

In earlier MongoDB versions, $near and $nearSphere queries are not supported
for sharded collections; instead, for sharded clusters, you must use
either the $geoNear aggregation stage and the deprecated
geoNear command.

You can also query for geospatial data for a sharded cluster using
$geoWithin and $geoIntersect.

Covered Queries

Geospatial indexes cannot
cover a query.

Geospatial Queries

Note

For spherical queries, use the 2dsphere index result.

The use of 2d index for spherical queries may lead to incorrect
results, such as the use of the 2d index for spherical queries
that wrap around the poles.

Geospatial Query Operators

MongoDB provides the following geospatial query operators:

	Name

	Description

	$geoIntersects

	Selects geometries that intersect with a GeoJSON geometry.
The 2dsphere index supports
$geoIntersects.

	$geoWithin

	Selects geometries within a bounding GeoJSON geometry. The 2dsphere and 2d indexes support
$geoWithin.

	$near

	Returns geospatial objects in proximity to a point.
Requires a geospatial index. The 2dsphere and 2d indexes support
$near.

	$nearSphere

	Returns geospatial objects in proximity to a point on a sphere.
Requires a geospatial index. The 2dsphere and 2d indexes support
$nearSphere.

For more details, including examples, see the individual reference page.

Geospatial Command

MongoDB provides the following geospatial command:

	Command

	Description

	geoNear (Deprecated in MongoDB 4.0)

	Performs a geospatial query that returns the documents closest
to a given point.

The deprecated geoNear command requires a geospatial index.

For more details, including examples, see the geoNear
reference page.

Geospatial Aggregation Stage

MongoDB provides the following geospatial aggregation pipeline
stage:

	Stage

	Description

	$geoNear

	Returns an ordered stream of documents based on the proximity to a
geospatial point. Incorporates the functionality of
$match, $sort, and $limit for
geospatial data. The output documents include an additional distance
field and can include a location identifier field.

$geoNear requires a geospatial index.

For more details, including examples, see $geoNear
reference page.

Geospatial Models

MongoDB geospatial queries can interpret geometry on a flat surface or
a sphere.

2dsphere indexes support only spherical queries (i.e. queries that
interpret geometries on a spherical surface).

2d indexes support flat queries (i.e. queries that interpret
geometries on a flat surface) and some spherical queries. While 2d
indexes support some spherical queries, the use of 2d indexes for
these spherical queries can result in error. If possible, use
2dsphere indexes for spherical queries.

The following table lists the geospatial query operators, supported
query, used by each geospatial operations:

	Operation

	Spherical/Flat Query

	Notes

	$near (GeoJSON centroid
point in this line and the following line, 2dsphere index)

	Spherical

	See also the $nearSphere operator, which provides the
same functionality when used with GeoJSON and a 2dsphere index.

	$near (legacy coordinates, 2d index)

	Flat

	

	$nearSphere (GeoJSON point, 2dsphere index)

	Spherical

	Provides the same functionality as $near operation that
uses GeoJSON point and a
2dsphere index.

For spherical queries, it may be preferable to use
$nearSphere which explicitly specifies the spherical
queries in the name rather than $near operator.

	$nearSphere (legacy coordinates, 2d index)

	Spherical

	Use GeoJSON points instead.

	$geoWithin : { $geometry: … }

	Spherical

	

	$geoWithin : { $box: … }

	Flat

	

	$geoWithin : { $polygon: … }

	Flat

	

	$geoWithin : { $center: … }

	Flat

	

	$geoWithin : { $centerSphere: … }

	Spherical

	

	$geoIntersects

	Spherical

	

	geoNear command (2dsphere index)

	Spherical

	Deprecated in MongoDB 4.0

	geoNear command (2d index)

	Flat

	Deprecated in MongoDB 4.0

	$geoNear aggregation stage (2dsphere index)

	Spherical

	

	$geoNear aggregation stage (2d index)

	Flat

	

Example

Create a collection places with the following documents:

copy

db.places.insert({
 name: "Central Park",
 location: { type: "Point", coordinates: [-73.97, 40.77] },
 category: "Parks"
});
db.places.insert({
 name: "Sara D. Roosevelt Park",
 location: { type: "Point", coordinates: [-73.9928, 40.7193] },
 category: "Parks"
});
db.places.insert({
 name: "Polo Grounds",
 location: { type: "Point", coordinates: [-73.9375, 40.8303] },
 category: "Stadiums"
});

The following operation creates a 2dsphere index on the
location field:

copy

db.places.createIndex({ location: "2dsphere" })

The following query uses the $near operator to return
documents that are at least 1000 meters from and at most 5000 meters
from the specified GeoJSON point, sorted in order from nearest to
farthest:

copy

db.places.find(
 {
 location:
 { $near:
 {
 $geometry: { type: "Point", coordinates: [-73.9667, 40.78] },
 $minDistance: 1000,
 $maxDistance: 5000
 }
 }
 }
)

The following operation uses the geoNear aggregation
operation to return documents that match the query filter { category:
"Parks" }, sorted in order of nearest to farthest to the specified
GeoJSON point:

copy

db.places.aggregate([
 {
 $geoNear: {
 near: { type: "Point", coordinates: [-73.9667, 40.78] },
 spherical: true,
 query: { category: "Parks" },
 distanceField: "calcDistance"
 }
 }
])

Aggregation

On this page

	Aggregation Pipeline

	Map-Reduce

	Single Purpose Aggregation Operations

	Additional Features and Behaviors

	Additional Resources

Aggregation operations process data records and return computed
results. Aggregation operations group values from multiple documents
together, and can perform a variety of operations on the grouped data
to return a single result. MongoDB provides three ways to perform
aggregation: the aggregation pipeline, the map-reduce function, and single purpose aggregation methods.

Aggregation Pipeline

MongoDB’s aggregation framework is modeled on the concept of data
processing pipelines. Documents enter a multi-stage pipeline that
transforms the documents into an aggregated result.

The most basic pipeline stages provide filters that operate like
queries and document transformations that modify the form
of the output document.

Other pipeline operations provide tools for grouping and sorting
documents by specific field or fields as well as tools for aggregating
the contents of arrays, including arrays of documents. In addition,
pipeline stages can use operators for tasks such as calculating the
average or concatenating a string.

The pipeline provides efficient data aggregation using native
operations within MongoDB, and is the preferred method for data
aggregation in MongoDB.

The aggregation pipeline can operate on a
sharded collection.

The aggregation pipeline can use indexes to improve its performance
during some of its stages. In addition, the aggregation pipeline has an
internal optimization phase. See
Pipeline Operators and Indexes and
Aggregation Pipeline Optimization for details.

[image: Diagram of the annotated aggregation pipeline operation. The aggregation pipeline has two stages: ``$match`` and ``$group``.]

Map-Reduce

MongoDB also provides map-reduce operations
to perform aggregation. In general, map-reduce operations have two
phases: a map stage that processes each document and emits one or
more objects for each input document, and reduce phase that combines
the output of the map operation. Optionally, map-reduce can have a
finalize stage to make final modifications to the result. Like other
aggregation operations, map-reduce can specify a query condition to
select the input documents as well as sort and limit the results.

Map-reduce uses custom JavaScript functions to perform the map and
reduce operations, as well as the optional finalize operation. While
the custom JavaScript provide great flexibility compared to the
aggregation pipeline, in general, map-reduce is less efficient and more
complex than the aggregation pipeline.

Map-reduce can operate on a
sharded collection. Map-reduce operations
can also output to a sharded collection. See
Aggregation Pipeline and Sharded Collections and
Map-Reduce and Sharded Collections for details.

Note

Starting in MongoDB 2.4, certain mongo shell
functions and properties are inaccessible in map-reduce
operations. MongoDB 2.4 also provides support for multiple
JavaScript operations to run at the same time. Before MongoDB 2.4,
JavaScript code executed in a single thread, raising concurrency
issues for map-reduce.

[image: Diagram of the annotated map-reduce operation.]

Single Purpose Aggregation Operations

MongoDB also provides db.collection.estimatedDocumentCount(),
db.collection.count() and db.collection.distinct().

All of these operations aggregate documents from a single collection.
While these operations provide simple access to common aggregation
processes, they lack the flexibility and capabilities of the
aggregation pipeline and map-reduce.

[image: Diagram of the annotated distinct operation.]

Additional Features and Behaviors

For a feature comparison of the aggregation pipeline,
map-reduce, and the special group functionality, see
Aggregation Commands Comparison.

	Aggregation Pipeline

	Map-Reduce
	Map-Reduce and Sharded Collections

	Map-Reduce Concurrency

	Map-Reduce Examples

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Aggregation Reference
	Aggregation Pipeline Quick Reference

	Aggregation Commands

	Aggregation Commands Comparison

	Variables in Aggregation Expressions

	SQL to Aggregation Mapping Chart

Additional Resources

	MongoDB Analytics: Learn Aggregation by Example: Exploratory Analytics and Visualization Using Flight Data [http://www.mongodb.com/presentations/mongodb-analytics-learn-aggregation-example-exploratory-analytics-and-visualization?jmp=docs]

	MongoDB for Time Series Data: Analyzing Time Series Data Using the Aggregation Framework and Hadoop [http://www.mongodb.com/presentations/mongodb-time-series-data-part-2-analyzing-time-series-data-using-aggregation-framework?jmp=docs]

	The Aggregation Framework [https://www.mongodb.com/presentations/aggregation-framework-0?jmp=docs]

	Webinar: Exploring the Aggregation Framework [https://www.mongodb.com/webinar/exploring-the-aggregation-framework?jmp=docs]

	Quick Reference Cards [https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs]

Data Models

Data in MongoDB has a flexible schema. Collections do not enforce document structure by default. This
flexibility gives you data-modeling choices to match your application
and its performance requirements.

	Data Modeling Introduction

	An introduction to data modeling in MongoDB.

	Schema Validation

	MongoDB provides the capability for schema validation during
updates and insertions.

	Data Modeling Concepts

	The core documentation detailing the decisions you must make when
determining a data model, and discussing considerations that
should be taken into account.

	Data Model Examples and Patterns

	Examples of possible data models that you can use to structure
your MongoDB documents.

	Data Model Reference

	Reference material for data modeling for developers of MongoDB
applications.

	Data Modeling Introduction

	Schema Validation

	Data Modeling Concepts
	Data Model Design

	Operational Factors and Data Models

	Data Model Examples and Patterns
	Model Relationships Between Documents
	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Tree Structures
	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with an Array of Ancestors

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

	Model Specific Application Contexts
	Model Data for Atomic Operations

	Model Data to Support Keyword Search

	Model Monetary Data

	Model Time Data

	Data Model Reference
	Database References

Indexes

On this page

	Default _id Index

	Create an Index

	Index Types

	Index Properties

	Index Use

	Indexes and Collation

	Covered Queries

	Index Intersection

	Restrictions

	Additional Considerations

	Additional Resources

Indexes support the efficient execution of queries in MongoDB. Without
indexes, MongoDB must perform a collection scan, i.e. scan every
document in a collection, to select those documents that match the
query statement. If an appropriate index exists for a query,
MongoDB can use the index to limit the number of documents it must
inspect.

Indexes are special data structures 1 that store a small
portion of the collection’s data set in an easy to traverse form. The
index stores the value of a specific field or set of fields, ordered by
the value of the field. The ordering of the index entries supports
efficient equality matches and range-based query operations. In
addition, MongoDB can return sorted results by using the ordering in
the index.

The following diagram illustrates a query that selects and orders the
matching documents using an index:

[image: Diagram of a query that uses an index to select and return sorted results. The index stores ``score`` values in ascending order. MongoDB can traverse the index in either ascending or descending order to return sorted results.]

Fundamentally, indexes in MongoDB are similar to indexes in other
database systems. MongoDB defines indexes at the collection
level and supports indexes on any field or sub-field of the documents
in a MongoDB collection.

Default _id Index

MongoDB creates a unique index on the
_id field during the creation of a
collection. The _id index prevents clients from inserting two
documents with the same value for the _id field. You cannot drop
this index on the _id field.

Note

In sharded clusters, if you do not use
the _id field as the shard key, then your application
must ensure the uniqueness of the values in the _id field
to prevent errors. This is most-often done by using a standard
auto-generated ObjectId.

Create an Index

 	Mongo Shell

 	Compass

 	Python

 	Java (Sync)

 	Node.js

 	
 Other

 	PHP

 	Motor

 	Java (Async)

 	C#

 	Perl

 	Ruby

 	Scala

 To create an index in the
Mongo Shell, use
db.collection.createIndex().

copy

db.collection.createIndex(<key and index type specification>, <options>)

The following example creates a single key descending index on
the name field:

copy

db.collection.createIndex({ name: -1 })

The db.collection.createIndex method only
creates an index if an index of the same specification does
not already exist.

Important

To create an index on a collection in MongoDB Compass,
the collection must contain documents.

To create an index in
MongoDB Compass [https://docs.mongodb.com/compass/current/#compass-index], complete the following
steps:

	Navigate to the collection for which you wish to create
the index:

	In the left-hand MongoDB Compass navigation pane, click
the database to which your target collection belongs.

	From the database view, click the target collection name.

	Click the Indexes tab:

[image: Compass index tab]

 Security

Security

Note

Databases hosted on MongoDB Atlas are secure by default. Atlas encrypts your
data, both in-transit and at-rest, and makes it easy to control access with
role-based user management. Set up a free cluster now [https://www.mongodb.com/cloud/atlas/lp/security?utm_source=security&utm_campaign=20-docs-in-20-days&utm_medium=docs].

MongoDB provides various features, such as authentication, access
control, encryption, to secure your MongoDB deployments. Some key
security features include:

	Authentication

	Authorization

	TLS/SSL

	Enterprise Only

	Authentication

SCRAM

x.509

	Role-Based Access Control

Enable Auth

Manage Users and Roles

	TLS/SSL (Transport Encryption)

Configure mongod and mongos for TLS/SSL

TLS/SSL Configuration for Clients

	Kerberos Authentication

LDAP Proxy Authentication

Encryption at Rest

Auditing

Security Checklist

MongoDB also provides the Security Checklist for
a list of recommended actions to protect a MongoDB deployment.

Additional Resources

	Making HIPAA Compliant MongoDB Applications [https://www.mongodb.com/blog/post/making-hipaa-compliant-applications-mongodb?jmp=docs]

	Security Architecture White Paper [https://www.mongodb.com/lp/white-paper/mongodb-security-architecture?jmp=docs]

	Webinar: Securing Your MongoDB Deployment [http://www.mongodb.com/presentations/webinar-securing-your-mongodb-deployment?jmp=docs]

 Change Streams

Change Streams

On this page

	Watch Collection/Database/Deployment

	Open A Change Stream

	Modify Change Stream Output

	Lookup Full Document for Update Operations

	Resume a Change Stream

	Use Cases

	Access Control

	Event Notification

Database Triggers and Change Streams

Database triggers, based on change streams, are available via
MongoDB Stitch. Please review the Database Triggers documentation [https://docs.mongodb.com/stitch/mongodb/triggers/] for more
information.

New in version 3.6.

Change streams allow applications to access real-time data changes
without the complexity and risk of tailing the oplog.
Applications can use change streams to subscribe to all data changes on
a single collection, a database, or an entire deployment, and
immediately react to them. Because change streams use the aggregation
framework, applications can also filter for specific changes or
transform the notifications at will.

Change stream is available for replica sets and
sharded clusters that use WiredTiger storage engine and replica set protocol version 1
(pv1). Change streams can also be used on
deployments which employ MongoDB’s
encryption-at-rest feature.

Watch Collection/Database/Deployment

You can open change streams against:

	Target

	Description

	A collection

	You can open a change stream cursor for a single collection
(except system collections, or any collections in the
admin, local, and config databases).

The examples on this page use the MongoDB drivers to open and
work with a change stream cursor for a single collection. See
also the mongo shell method
db.collection.watch().

	A database

	Starting in MongoDB 4.0, you can open a change stream cursor for
a single database (excluding admin, local, and
config database) to watch for changes to all its non-system
collections.

For the MongoDB driver method, refer to your driver
documentation. See also the mongo shell method
db.watch().

	A deployment

	Starting in MongoDB 4.0, you can open a change stream cursor for
a deployment (either a replica set or a sharded cluster) to
watch for changes to all non-system collections across all
databases except for admin, local, and config.

For the MongoDB driver method, refer to your driver
documentation. See also the mongo shell method
Mongo.watch().

Change Stream Examples

The examples on this page use the MongoDB drivers to illustrate how
to open a change stream cursor for a collection and work with the
change stream cursor.

Important

Change stream is only available if "majority" read
concern support is enabled (default).

Open A Change Stream

For a replica set, you can open change stream for any of the
data-bearing members.

For a sharded cluster, you must issue the open change stream operation
against the mongos.

The following example opens a change stream for a collection and
iterates over the cursor to retrieve the change stream documents.
1 While the connection to the MongoDB deployment remains
open, the cursor remains open until one of the following occurs:

	The cursor is explicitly closed.

	An invalidate event occurs.

	If the deployment is a sharded cluster, a shard removal may cause an
open change stream cursor to close, and the closed change stream cursor may
not be fully resumable.

 	Python

 	Java (Sync)

 	Node.js

 	PHP

 	Motor

 	
 Other

 	C

 	C#

 	Ruby

 The Python examples below assume that you have connected to a MongoDB replica set and have accessed a database [http://api.mongodb.com/python/current/tutorial.html#making-a-connection-with-mongoclient/]
that contains an inventory collection.

copy

cursor = db.inventory.watch()
document = next(cursor)

The Java examples below assume that you have connected to a MongoDB replica set and have accessed a database [http://mongodb.github.io/mongo-java-driver/3.6/driver/tutorials/databases-collections/]
that contains an inventory collection.

copy

MongoCursor<ChangeStreamDocument<Document>> cursor = inventory.watch().iterator();
ChangeStreamDocument<Document> next = cursor.next();

The Node.js examples below assume that you have connected to a MongoDB replica set and have accessed a database [https://mongodb.github.io/node-mongodb-native/api-generated/mongoclient.html#connect]
that contains an inventory collection.

copy

const collection = db.collection('inventory');
const changeStream = collection.watch();
const next = await changeStream.next();

The examples below assume that you have connected to a MongoDB replica set and have accessed a database [https://docs.mongodb.com/php-library/current/reference/method/MongoDBClient__construct/]
that contains an inventory collection.

copy

$changeStream = $db->inventory->watch();
$changeStream->rewind();

$firstChange = $changeStream->current();

$changeStream->next();

$secondChange = $changeStream->current();

The examples below assume that you have connected to a MongoDB replica set and have accessed a database [https://motor.readthedocs.io/en/stable/tutorial-asyncio.html#creating-a-client]
that contains an inventory collection.

copy

cursor = db.inventory.watch()
document = await cursor.next()

The C examples below assume that you have connected to a MongoDB replica set and have accessed a database [http://mongoc.org/libmongoc/current/tutorial.html#making-a-connection/]
that contains an inventory collection.

copy

mongoc_collection_t *collection;
bson_t *pipeline = bson_new ();
bson_t opts = BSON_INITIALIZER;
mongoc_change_stream_t *stream;
const bson_t *change;
bson_iter_t iter;
bson_error_t error;

collection = mongoc_database_get_collection (db, "inventory");
stream = mongoc_collection_watch (collection, pipeline, NULL /* opts */);
mongoc_change_stream_next (stream, &change);
if (mongoc_change_stream_error_document (stream, &error, NULL)) {
 MONGOC_ERROR ("%s\n", error.message);
}

mongoc_change_stream_destroy (stream);

The C# examples below assume that you have connected to a MongoDB replica set and have accessed a database [http://mongodb.github.io/mongo-csharp-driver/2.4/getting_started/quick_tour/#make-a-connection/]
that contains an inventory collection.

copy

var enumerator = inventory.Watch().ToEnumerable().GetEnumerator();
enumerator.MoveNext();
var next = enumerator.Current;
enumerator.Dispose();

The examples below assume that you have connected to a MongoDB replica set and have accessed a database [https://docs.mongodb.com/ruby-driver/master/tutorials/ruby-driver-create-client/]
that contains an inventory collection.

copy

cursor = inventory.watch.to_enum
next_change = cursor.next

To retrieve the data change event notifications, iterate the change
stream cursor.

Note

The lifecycle of an unclosed cursor is language-dependent.

See Change Events for more information on the change stream
response document format.

	1

	Starting in MongoDB 4.0, you can specify a startAtOperationTime
to open the cursor at a particular point in time. If the specified
starting point is in the past, it must be in the time range of the
oplog.

Modify Change Stream Output

 	Python

 	Java (Sync)

 	Node.js

 	PHP

 	Motor

 	
 Other

 	C

 	C#

 	Ruby

 You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

copy

pipeline = [
 {'$match': {'fullDocument.username': 'alice'}},
 {'$addFields': {'newField': 'this is an added field!'}}
]
cursor = db.inventory.watch(pipeline=pipeline)
document = next(cursor)

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

copy

MongoClient mongoClient = new MongoClient(new MongoClientURI("mongodb://host1:port1,host2:port2..."));

// Select the MongoDB database and collection to open the change stream against

MongoDatabase db = mongoClient.getDatabase("myTargetDatabase");

MongoCollection<Document> collection = db.getCollection("myTargetCollection");

// Create $match pipeline stage.
List<Bson> pipeline = singletonList(Aggregates.match(Filters.or(
 Document.parse("{'fullDocument.username': 'alice'}"),
 Filters.in("operationType", asList("delete")))));

// Create the change stream cursor, passing the pipeline to the
// collection.watch() method

MongoCursor<Document> cursor = collection.watch(pipeline).iterator();

The pipeline list includes a single $match stage that
filters any operations where the username is alice, or
operations where the operationType is delete.

Passing the pipeline to the watch() method directs the
change stream to return notifications after passing them through the
specified pipeline.

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

copy

const pipeline = [
 { $match: { 'fullDocument.username': 'alice' } },
 { $addFields: { newField: 'this is an added field!' } }
];
const collection = db.collection('inventory');
const changeStream = collection.watch(pipeline);
const next = await changeStream.next();

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

You can control change stream output by
providing an array of one or more of the following pipeline stages when
configuring the change stream:

	$match

	$project

	$addFields

	$replaceRoot

	$redact

See Change Events for more information on the change stream
response document format.

Lookup Full Document for Update Operations

By default, change streams only return the delta of fields during the
update operation. However, you can configure the change stream to
return the most current majority-committed version of the updated
document.

 	Python

 	Java (Sync)

 	Node.js

 	PHP

 	Motor

 	
 Other

 	C

 	C#

 	Ruby

 To return the most current majority-committed version of the updated
document, pass full_document='updateLookup' to the
db.collection.watch() method.

In the example below, all update operations notifications
include a full_document field that represents the current
version of the document affected by the update operation.

copy

cursor = db.inventory.watch(full_document='updateLookup')
document = next(cursor)

To return the most current majority-committed version of the updated
document, pass FullDocument.UPDATE_LOOKUP to the
db.collection.watch.fullDocument() method.

In the example below, all update operations notifications
include a FullDocument field that represents the current
version of the document affected by the update operation.

copy

cursor = inventory.watch().fullDocument(FullDocument.UPDATE_LOOKUP).iterator();
next = cursor.next();

To return the most current majority-committed version of the updated
document, pass { fullDocument: 'updateLookup' } to the
collection.watch() method.

In the example below, all update operations notifications
include a fullDocument field that represents the current
version of the document affected by the update operation.

copy

const collection = db.collection('inventory');
const changeStream = collection.watch({ fullDocument: 'updateLookup' });
const next = await changeStream.next();

To return the most current
majority-committed version of the updated document, pass
"fullDocument' => \MongoDB\Operation\ChangeStreamCommand::FULL_DOCUMENT_UPDATE_LOOKUP"
to the watch() method.

In the example below, all update operations notifications
include a fullDocument field that represents the current
version of the document affected by the update operation.

copy

$changeStream = $db->inventory->watch([], ['fullDocument' => \MongoDB\Operation\Watch::FULL_DOCUMENT_UPDATE_LOOKUP]);
$changeStream->rewind();

$firstChange = $changeStream->current();

$changeStream->next();

$nextChange = $changeStream->current();

To return the most current majority-committed version of the updated
document, pass full_document='updateLookup' to the
db.collection.watch() method.

In the example below, all update operations notifications
include a `full_document field that represents the current
version of the document affected by the update operation.

copy

cursor = db.inventory.watch(full_document='updateLookup')
document = await cursor.next()

To return the most current majority-committed version of the updated
document, pass the "fullDocument" option with the "updateLookup" value to the
mongoc_collection_watch method.

In the example below, all update operations notifications
include a fullDocument field that represents the current
version of the document affected by the update operation.

copy

BSON_APPEND_UTF8 (&opts, "fullDocument", "updateLookup");
stream = mongoc_collection_watch (collection, pipeline, &opts);
mongoc_change_stream_next (stream, &change);
if (mongoc_change_stream_error_document (stream, &error, NULL)) {
 MONGOC_ERROR ("%s\n", error.message);
}

mongoc_change_stream_destroy (stream);

To return the most current majority-committed version of the updated
document, pass "FullDocument = ChangeStreamFullDocumentOption.UpdateLookup" to the
collection.Watch() method.

In the example below, all update operations notifications
include a FullDocument field that represents the current
version of the document affected by the update operation.

copy

var options = new ChangeStreamOptions { FullDocument = ChangeStreamFullDocumentOption.UpdateLookup };
var enumerator = inventory.Watch(options).ToEnumerable().GetEnumerator();
enumerator.MoveNext();
var next = enumerator.Current;
enumerator.Dispose();

To return the most current majority-committed version of the updated
document, pass full_document: 'updateLookup' to the
watch() method.

In the example below, all update operations notifications
include a full_document field that represents the current
version of the document affected by the update operation.

copy

cursor = inventory.watch([], full_document: 'updateLookup').to_enum
next_change = cursor.next

Note

If there are one or more majority-committed operations that modified
the updated document after the update operation but before the
lookup, the full document returned may differ significantly from the
document at the time of the update operation.

However, the deltas included in the change stream document always
correctly describe the watched collection changes that applied to
that change stream event.

See Change Events for more information on the change
stream response document format.

Resume a Change Stream

Change streams are resumable by specifying a resumeAfter token when
opening the cursor. For the resumeAfter token, use the _id
value of the change stream event document. Passing the _id value to the change stream
attempts to resume notifications starting after the specified operation.

Important

	The oplog must have enough history to locate the operation
associated with the token or the timestamp, if the timestamp is in
the past.

	You cannot resume a change stream after an invalidate event (for example, a collection drop or rename)
closes the stream.

 	Python

 	Java (Sync)

 	Node.js

 	PHP

 	Motor

 	
 Other

 	C

 	C#

 	Ruby

 In the example below, resume_token contains the change
stream notification id. The resume_after modifier takes a
parameter that must resolve to a resume token. Passing the
resume_token to the resume_after modifier directs the
change stream to attempt to resume notifications starting after
the operation specified in the resume token.

copy

resume_token = document.get("_id")
cursor = db.inventory.watch(resume_after=resume_token)
document = next(cursor)

In the example below, the resumeToken contains the change
stream notification id. The resumeAfter() method takes a parameter that must resolve to a resume
token. Passing the resumeToken to the resumeAfter() method directs
the change stream to attempt to resume notifications starting after the
operation specified in the resume token.

copy

BsonDocument resumeToken = next.getResumeToken();
cursor = inventory.watch().resumeAfter(resumeToken).iterator();
next = cursor.next();

In the example below, resumeToken contains the change
stream notification id. The resumeAfter takes a parameter
that must resolve to a resume token. Passing the
resumeToken to the resumeAfter modifier directs the
change stream to attempt to resume notifications starting after
the operation specified.

copy

const collection = db.collection('inventory');
const changeStream = collection.watch();
const change1 = await changeStream.next();

const resumeAfter = change1._id;
changeStream.close();

const newChangeStream = collection.watch({ resumeAfter });
const change2 = await newChangeStream.next();

In the example below, $resumeToken contains the change
stream notification id. The resumeAfter option takes a
value that must resolve to a resume token. Passing the
$resumeToken to the resumeAfter option directs the
change stream to attempt to resume notifications starting after
the operation specified in the resume token.

copy

$resumeToken = ($lastChange !== null) ? $lastChange->_id : null;

if ($resumeToken === null) {
 throw new \Exception('resumeToken was not found');
}

$changeStream = $db->inventory->watch([], ['resumeAfter' => $resumeToken]);
$changeStream->rewind();

$nextChange = $changeStream->current();

In the example below, resume_token contains the change
stream notification id. The resume_after modifier takes a parameter that must resolve to a resume
token. Passing the resume_token to the resume_after modifier directs
the change stream to attempt to resume notifications starting after the
operation specified in the resume token.

copy

resume_token = document.get("_id")
cursor = db.inventory.watch(resume_after=resume_token)
document = await cursor.next()

In the example below, the resumeAfter option is appended to the stream options
to recreate the stream after it has been destroyed. Passing the _id to
the change stream attempts to resume notifications starting after the
operation specified.

copy

stream = mongoc_collection_watch (collection, pipeline, NULL);
if (mongoc_change_stream_next (stream, &change)) {
 bson_iter_init_find (&iter, change, "_id");
 BSON_APPEND_VALUE (&opts, "resumeAfter", bson_iter_value (&iter));

 mongoc_change_stream_destroy (stream);
 stream = mongoc_collection_watch (collection, pipeline, &opts);
 mongoc_change_stream_next (stream, &change);
 mongoc_change_stream_destroy (stream);
} else {
 if (mongoc_change_stream_error_document (stream, &error, NULL)) {
 MONGOC_ERROR ("%s\n", error.message);
 }

 mongoc_change_stream_destroy (stream);
}

In the example below, the resumeToken is retrieved from the last change stream document
and passed to the Watch() method as an option. Passing the resumeToken
to the Watch() method directs
the change stream to attempt to resume notifications starting after the
operation specified in the resume token.

copy

 var resumeToken = lastChangeStreamDocument.ResumeToken;
 var options = new ChangeStreamOptions { ResumeAfter = resumeToken };
 var enumerator = inventory.Watch(options).ToEnumerable().GetEnumerator();
 enumerator.MoveNext();
 var next = enumerator.Current;
 enumerator.Dispose();

In the example below, resume_token contains the change
stream notification id. The resume_after modifier takes a
parameter that must resolve to a resume token. Passing the
resume_token to the resume_after modifier directs the
change stream to attempt to resume notifications starting after
the operation specified in the resume token.

copy

resume_token = next_change['_id']
cursor = inventory.watch([], resume_after: resume_token).to_enum
resumed_change = cursor.next

Resume Token and featureCompatibilityVersion

If the featureCompatibilityVersion (fcv) is set to "4.0" or
greater, newly opened change streams return a hex-encoded string for
the resume token data, i.e. the _id._data value. This change
allows for the ability to compare and sort the resume tokens. If the
fcv is 3.6, newly opened change streams return a BinData for the
resume token data.

Important

The fcv value at the time of the cursor’s opening determine the
resume token data type. That is, the modification of the fcv does
not affect the resume tokens for change streams already opened
before the fcv change.

Regardless of the fcv value, a 4.0 replica set or a sharded cluster can
resume a change stream using either the BinData or string resume token.

As such, a 4.0 deployment can use a resume token from a change stream
opened on a collection from a 3.6 deployment.

Use Cases

Change streams can benefit architectures with reliant business systems,
informing downstream systems once data changes are durable. For example,
change streams can save time for developers when implementing Extract,
Transform, and Load (ETL) services, cross-platform synchronization,
collaboration functionality, and notification services.

Access Control

For deployments enforcing Authentication and authorization:

	To open a change stream against specific collection, applications
must have privileges that grant changeStream and
find actions on the corresponding collection.

copy

{ resource: { db: <dbname>, collection: <collection> }, actions: ["find", "changeStream"] }

	To open a change stream on a single databases, applications must have
privileges that grant changeStream and
find actions on all non-system collections in a
database.

copy

{ resource: { db: <dbname>, collection: "" }, actions: ["find", "changeStream"] }

	To open a change stream on an entire deployment, applications must
have privileges that grant changeStream and
find actions on all non-system collections for all
databases in the deployment.

copy

{ resource: { db: "", collection: "" }, actions: ["find", "changeStream"] }

Event Notification

Change streams only notify on data changes that have persisted to a majority
of data-bearing members in the replica set. This ensures that notifications are
triggered only by majority-committed changes that are durable in failure
scenarios.

For example, consider a 3-member replica set with a change stream
cursor opened against the primary. If a client issues an insert
operation, the change stream only notifies the application of the data change
once that insert has persisted to a majority of data-bearing members.

If an operation is associated with a multi-document transactions, the change event document includes the
txnNumber and the lsid.

 Replication

Replication

On this page

	Redundancy and Data Availability

	Replication in MongoDB

	Asynchronous Replication

	Automatic Failover

	Read Operations

	Transactions

	Change Streams

	Additional Features

Note

All databases hosted on MongoDB Atlas are configured as replica sets. Atlas
makes it easy to add and remove replica set members in any region of your
preferred cloud provider. Sign up for MongoDB Atlas [https://www.mongodb.com/cloud/atlas?utm_source=replication&utm_campaign=20-docs-in-20-days&utm_medium=docs].

A replica set in MongoDB is a group of mongod processes
that maintain the same data set. Replica sets provide redundancy and
high availability, and are the basis for all production deployments.
This section introduces replication in MongoDB as well as the
components and architecture of replica sets. The section also provides
tutorials for common tasks related to replica sets.

Redundancy and Data Availability

Replication provides redundancy and increases data availability. With
multiple copies of data on different database servers, replication
provides a level of fault tolerance against the loss of a single
database server.

In some cases, replication can provide increased read capacity as
clients can send read operations to different servers. Maintaining
copies of data in different data centers can increase data locality
and availability for distributed applications. You can also maintain
additional copies for dedicated purposes, such as disaster recovery,
reporting, or backup.

Replication in MongoDB

A replica set is a group of mongod instances that maintain
the same data set. A replica set contains several data bearing nodes
and optionally one arbiter node. Of the data bearing nodes, one and
only one member is deemed the primary node, while the other nodes are
deemed secondary nodes.

The primary node receives all write
operations. A replica set can have only one primary capable of
confirming writes with { w: "majority" }
write concern; although in some circumstances, another mongod instance
may transiently believe itself to also be primary.
1 The primary records all changes to its data
sets in its operation log, i.e. oplog. For more information on primary node
operation, see Replica Set Primary.

[image: Diagram of default routing of reads and writes to the primary.]

The secondaries replicate the
primary’s oplog and apply the operations to their data sets such that
the secondaries’ data sets reflect the primary’s data set. If the
primary is unavailable, an eligible secondary will hold an election to
elect itself the new primary. For more information on secondary
members, see Replica Set Secondary Members.

[image: Diagram of a 3 member replica set that consists of a primary and two secondaries.]

You may add an extra mongod instance to a replica set as an
arbiter. Arbiters do not maintain a
data set. The purpose of an arbiter is to maintain a quorum in a
replica set by responding to heartbeat and election requests by other
replica set members. Because they do not store a data set, arbiters can
be a good way to provide replica set quorum functionality with a
cheaper resource cost than a fully functional replica set member with a
data set. If your replica set has an even number of members, add an
arbiter to obtain a majority of votes in an election for primary.
Arbiters do not require dedicated hardware. For more information on
arbiters, see Replica Set Arbiter.

[image: Diagram of a replica set that consists of a primary, a secondary, and an arbiter.]

An arbiter will always be an arbiter
whereas a primary may step down and
become a secondary and a
secondary may become the primary
during an election.

Asynchronous Replication

Secondaries apply operations from the primary asynchronously. By
applying operations after the primary, sets can continue to function
despite the failure of one or more members. For more information on
replication mechanics, see Replica Set Oplog and
Replica Set Data Synchronization.

Automatic Failover

When a primary does not communicate with the other members of the set
for more than the configured electionTimeoutMillis period
(10 seconds by default), an eligible secondary calls for an election
to nominate itself as the new primary. The cluster attempts to
complete the election of a new primary and resume normal operations.

[image: Diagram of an election of a new primary. In a three member replica set with two secondaries, the primary becomes unreachable. The loss of a primary triggers an election where one of the secondaries becomes the new primary]

The replica set cannot process write operations
until the election completes successfully. The replica set can continue
to serve read queries if such queries are configured to
run on secondaries while the
primary is offline.

The median time before a cluster elects a new primary should not
typically exceed 12 seconds, assuming default replica
configuration settings. This includes time required to
mark the primary as unavailable and
call and complete an election.
You can tune this time period by modifying the
settings.electionTimeoutMillis replication configuration
option. Factors such as network latency may extend the time required
for replica set elections to complete, which in turn affects the amount
of time your cluster may operate without a primary. These factors are
dependent on your particular cluster architecture.

Lowering the electionTimeoutMillis
replication configuration option from the default 10000 (10 seconds)
can result in faster detection of primary failure. However,
the cluster may call elections more frequently due to factors such as
temporary network latency even if the primary is otherwise healthy.
This can result in increased rollbacks for
w : 1 write operations.

Your application connection logic should include tolerance for
automatic failovers and the subsequent elections.

New in version 3.6: MongoDB 3.6+ drivers can detect the loss of the primary and
automatically retry certain write operations a single time, providing additional built-in
handling of automatic failovers and elections.

See Replica Set Elections for complete documentation on
replica set elections.

To learn more about MongoDB’s failover process, see:

	Replica Set Elections

	Retryable Writes

	Rollbacks During Replica Set Failover

Read Operations

By default, clients read from the primary 1;
however, clients can specify a read preference to send read operations to secondaries.
Asynchronous replication to
secondaries means that reads from secondaries may return data that does
not reflect the state of the data on the primary. For information on
reading from replica sets, see Read Preference.

Multi-document transactions that contain
read operations must use read preference primary.

All operations in a given transaction must route to the same member.

Depending on the read concern, clients can see the results of writes
before the writes are durable:

	Regardless of write concern, other
clients using "local" or "available"
readConcern can see the result of a write operation before the write
operation is acknowledged to the issuing client.

For operations in a multi-document transaction, the data changes made in the transaction are
not visible outside the transaction until a transaction commits.
However, other clients can see the result at the time of the
transaction commit before the commit operation is acknowledged to the
issuing client.

	Clients using "local" or "available"
readConcern can read data which may be subsequently rolled back during replica set failovers.

For more information on read isolations, consistency and recency for
MongoDB, see Read Isolation, Consistency, and Recency.

Transactions

Starting in MongoDB 4.0, multi-document transactions are available for replica sets.

Multi-document transactions that contain
read operations must use read preference primary.

All operations in a given transaction must route to the same member.

Change Streams

Starting in MongoDB 3.6, change streams are
available for replica sets and sharded clusters. Change streams allow
applications to access real-time data changes without the complexity
and risk of tailing the oplog. Applications can use change streams to
subscribe to all data changes on a collection or collections.

Additional Features

Replica sets provide a number of options to support application
needs. For example, you may deploy a replica set with members in
multiple data centers, or
control the outcome of elections by adjusting the
members[n].priority of some
members. Replica sets also support dedicated members for reporting,
disaster recovery, or backup functions.

See Priority 0 Replica Set Members,
Hidden Replica Set Members and
Delayed Replica Set Members for more information.

	1(1,2)

	In some circumstances, two nodes in a replica set
may transiently believe that they are the primary, but at most, one
of them will be able to complete writes with { w:
"majority" } write concern. The node that can complete
{ w: "majority" } writes is the current
primary, and the other node is a former primary that has not yet
recognized its demotion, typically due to a network partition.
When this occurs, clients that connect to the former primary may
observe stale data despite having requested read preference
primary, and new writes to the former primary will
eventually roll back.

 Sharding

Sharding

On this page

	Sharded Cluster

	Shard Keys

	Chunks

	Balancer and Even Chunk Distribution

	Advantages of Sharding

	Considerations Before Sharding

	Sharded and Non-Sharded Collections

	Connecting to a Sharded Cluster

	Sharding Strategy

	Zones in Sharded Clusters

	Collations in Sharding

	Change Streams

	Additional Resources

	Sharded Cluster Components
	Shards

	Config Servers (metadata)

	Router (mongos)

	Shard Keys

	Hashed Sharding

	Ranged Sharding

	Zones
	Manage Shard Zones

	Segmenting Data by Location

	Tiered Hardware for Varying SLA or SLO

	Segmenting Data by Application or Customer

	Distributed Local Writes for Insert Only Workloads

	Data Partitioning with Chunks
	Create Chunks in a Sharded Cluster

	Split Chunks in a Sharded Cluster

	Merge Chunks in a Sharded Cluster

	Modify Chunk Size in a Sharded Cluster

	Balancer
	Manage Sharded Cluster Balancer

	Migrate Chunks in a Sharded Cluster

	Administration
	Config Server Administration
	Replace a Config Server

	View Cluster Configuration

	Migrate a Sharded Cluster to Different Hardware

	Add Shards to a Cluster

	Remove Shards from an Existing Sharded Cluster

	Clear jumbo Flag

	Back Up Cluster Metadata

	Convert Sharded Cluster to Replica Set

	Convert a Replica Set to a Sharded Cluster

	Convert a Shard Standalone to a Shard Replica Set

	Sharding Reference
	Operational Restrictions

	Troubleshoot Sharded Clusters

	Config Database

Note

MongoDB Atlas implements sharding with best practices baked in, allowing you
to scale your cluster through a GUI. The deployment and management of config
servers and query routers is fully automated. Learn more [https://www.mongodb.com/cloud/atlas?utm_source=sharding&utm_campaign=20-docs-in-20-days&utm_medium=docs].

If you have an existing sharded MongoDB deployment, you can learn how to
migrate it into Atlas to get fully-managed sharding and other Atlas-only
capabilities here [https://www.mongodb.com/cloud/atlas/migrate?utm_source=sharding&utm_campaign=20-docs-in-20-days-migrations&utm_medium=docs].

Sharding is a method for distributing data across multiple
machines. MongoDB uses sharding to support deployments with very large data
sets and high throughput operations.

Database systems with large data sets or high throughput applications can
challenge the capacity of a single server. For example, high query rates can
exhaust the CPU capacity of the server. Working set sizes larger than the
system’s RAM stress the I/O capacity of disk drives.

There are two methods for addressing system growth: vertical and horizontal
scaling.

Vertical Scaling involves increasing the capacity of a single server, such
as using a more powerful CPU, adding more RAM, or increasing the amount of
storage space. Limitations in available technology may restrict a single
machine from being sufficiently powerful for a given workload. Additionally,
Cloud-based providers have hard ceilings based on available hardware
configurations. As a result, there is a practical maximum for vertical scaling.

Horizontal Scaling involves dividing the system dataset and load over
multiple servers, adding additional servers to increase capacity as required.
While the overall speed or capacity of a single machine may not be high, each
machine handles a subset of the overall workload, potentially providing better
efficiency than a single high-speed high-capacity server. Expanding the
capacity of the deployment only requires adding additional servers as needed,
which can be a lower overall cost than high-end hardware for a single machine.
The trade off is increased complexity in infrastructure and maintenance for
the deployment.

MongoDB supports horizontal scaling through sharding.

Sharded Cluster

A MongoDB sharded cluster consists of the following components:

	shard: Each shard contains a
subset of the sharded data. Each shard can be deployed as a replica
set.

	mongos: The mongos acts as a
query router, providing an interface between client applications and the
sharded cluster.

	config servers: Config
servers store metadata and configuration settings for the cluster. As
of MongoDB 3.4, config servers must be deployed as a replica set (CSRS).

The following graphic describes the interaction of components within a
sharded cluster:

[image: Diagram of a sample sharded cluster for production purposes. Contains exactly 3 config servers, 2 or more ``mongos`` query routers, and at least 2 shards. The shards are replica sets.]

MongoDB shards data at the collection level, distributing the
collection data across the shards in the cluster.

Shard Keys

To distribute the documents in a collection, MongoDB partitions the collection using the shard key. The shard key
consists of an immutable field or fields that exist in every document in the
target collection.

You choose the shard key when sharding a collection. The choice of shard key
cannot be changed after sharding. A sharded collection can have only one
shard key. See Shard Key Specification.

To shard a non-empty collection, the collection must have an index
that starts with the shard key. For empty collections, MongoDB creates the
index if the collection does not already have an appropriate index for the
specified shard key. See Shard Key Indexes.

The choice of shard key affects the performance, efficiency, and scalability
of a sharded cluster. A cluster with the best possible hardware and
infrastructure can be bottlenecked by the choice of shard key. The choice of
shard key and its backing index can also affect the sharding strategy that your cluster can use.

See the shard key
documentation for more information.

Chunks

MongoDB partitions sharded data into chunks. Each
chunk has an inclusive lower and exclusive upper range based on the
shard key.

Balancer and Even Chunk Distribution

In an attempt to achieve an even distribution of chunks across all
shards in the cluster, a balancer runs in the background to
migrate chunks across the shards .

See Data Partitioning with Chunks for more information.

Advantages of Sharding

Reads / Writes

MongoDB distributes the read and write workload across the
shards in the sharded cluster, allowing each shard to
process a subset of cluster operations. Both read and write workloads can be
scaled horizontally across the cluster by adding more shards.

For queries that include the shard key or the prefix of a compound shard key, mongos can target the query at a
specific shard or set of shards. These targeted
operations are generally more efficient than
broadcasting to every shard in the cluster.

Storage Capacity

Sharding distributes data across the shards in the
cluster, allowing each shard to contain a subset of the total cluster data. As
the data set grows, additional shards increase the storage capacity of the
cluster.

High Availability

A sharded cluster can continue to perform partial read / write
operations even if one or more shards are unavailable. While the subset of
data on the unavailable shards cannot be accessed during the downtime, reads
or writes directed at the available shards can still succeed.

Starting in MongoDB 3.2, you can deploy config servers as replica sets. A sharded cluster with
a Config Server Replica Set (CSRS) can continue to process reads and
writes as long as a majority of the replica set is available.

In version 3.4, MongoDB removes support for SCCC config servers.

In production environments, individual shards should be deployed as
replica sets, providing increased redundancy and
availability.

Considerations Before Sharding

Sharded cluster infrastructure requirements and complexity require
careful planning, execution, and maintenance.

Careful consideration in choosing the shard key is necessary for
ensuring cluster performance and efficiency. You cannot change the
shard key after sharding, nor can you unshard a sharded collection. See
Choosing a Shard Key.

Sharding has certain operational requirements and
restrictions. See
Operational Restrictions in Sharded Clusters for more information.

If queries do not include the shard key or the prefix of a
compound shard key, mongos performs
a broadcast operation, querying
all shards in the sharded cluster. These scatter/gather queries can
be long running operations.

Note

If you have an active support contract with MongoDB, consider contacting
your account representative for assistance with sharded cluster
planning and deployment.

Sharded and Non-Sharded Collections

A database can have a mixture of sharded and unsharded collections. Sharded
collections are partitioned and distributed across the
shards in the cluster. Unsharded collections are stored on a
primary shard. Each database has its own primary shard.

[image: Diagram of a primary shard. A primary shard contains non-sharded collections as well as chunks of documents from sharded collections. Shard A is the primary shard.]

Connecting to a Sharded Cluster

You must connect to a mongos router to interact with any collection in
the sharded cluster. This includes sharded and unsharded
collections. Clients should never connect to a single shard in order to
perform read or write operations.

[image: Diagram of applications/drivers issuing queries to mongos for unsharded collection as well as sharded collection. Config servers not shown.]

You can connect to a mongos the same way you connect to a
mongod, such as via the mongo shell or a MongoDB
driver [https://docs.mongodb.com/ecosystem/drivers?jump=docs].

Sharding Strategy

MongoDB supports two sharding strategies for distributing data
across sharded clusters.

Hashed Sharding

Hashed Sharding involves computing a hash of the shard key field’s
value. Each chunk is then assigned a range based on the
hashed shard key values.

Tip

MongoDB automatically computes the hashes when resolving queries using
hashed indexes. Applications do not need to compute hashes.

[image: Diagram of the hashed based segmentation.]

While a range of shard keys may be “close”, their hashed values are unlikely
to be on the same chunk. Data distribution based on hashed values
facilitates more even data distribution, especially in data sets where the
shard key changes monotonically.

However, hashed distribution means that ranged-based queries on the shard key
are less likely to target a single shard, resulting in more cluster wide
broadcast operations

See Hashed Sharding for more information.

Ranged Sharding

Ranged sharding involves dividing data into ranges based on the
shard key values. Each chunk is then assigned a range based on the
shard key values.

[image: Diagram of the shard key value space segmented into smaller ranges or chunks.]

A range of shard keys whose values are “close” are more likely to reside on
the same chunk. This allows for targeted
operations as a mongos can route the
operations to only the shards that contain the required data.

The efficiency of ranged sharding depends on the shard key chosen. Poorly
considered shard keys can result in uneven distribution of data, which can
negate some benefits of sharding or can cause performance bottlenecks. See
shard key selection for ranged sharding.

See Ranged Sharding for more information.

Zones in Sharded Clusters

In sharded clusters, you can create zones of sharded data based
on the shard key. You can associate each zone with one or more shards
in the cluster. A shard can associate with any number of zones. In a balanced
cluster, MongoDB migrates chunks covered by a zone only to
those shards associated with the zone.

Each zone covers one or more ranges of shard key values. Each range a
zone covers is always inclusive of its lower boundary and exclusive of its
upper boundary.

[image: Diagram of data distribution based on zones in a sharded cluster]

You must use fields contained in the shard key when defining a new
range for a zone to cover. If using a compound shard
key, the range must include the prefix of the shard key. See shard keys
in zones for more information.

When choosing a shard key, carefully consider the possibility of using zone
sharding in the future, as you cannot change the shard key after
sharding the collection.

Most commonly, zones serve to improve the locality of data for
sharded clusters that span multiple data centers.

Tip

Starting in MongoDB 4.0.3, setting up zones and zone ranges before
you shard an empty or a non-existing collection allows for a faster
setup of zoned sharding.

See zones for more information.

Collations in Sharding

Use the shardCollection command with the collation :
{ locale : "simple" } option to shard a collection which has a
default collation. Successful
sharding requires that:

	The collection must have an index whose prefix is the shard key

	The index must have the collation { locale: "simple" }

When creating new collections with a collation, ensure these conditions
are met prior to sharding the collection.

Note

Queries on the sharded collection continue to use the default
collation configured for the collection. To use the shard key
index’s simple collation, specify {locale : "simple"}
in the query’s collation document.

See shardCollection for more information about sharding
and collation.

Change Streams

Starting in MongoDB 3.6, change streams are
available for replica sets and sharded clusters. Change streams allow
applications to access real-time data changes without the complexity
and risk of tailing the oplog. Applications can use change streams to
subscribe to all data changes on a collection or collections.

Additional Resources

	Sharding Methods for MongoDB (Presentation) [http://www.mongodb.com/presentations/webinar-sharding-methods-mongodb?jmp=docs]

	Everything You Need to Know About Sharding (Presentation) [http://www.mongodb.com/presentations/webinar-everything-you-need-know-about-sharding?jmp=docs]

	MongoDB for Time Series Data: Sharding [http://www.mongodb.com/presentations/mongodb-time-series-data-part-3-sharding?jmp=docs]

	MongoDB Operations Best Practices White Paper [http://www.mongodb.com/lp/white-paper/ops-best-practices?jmp=docs]

	Talk to a MongoDB Expert About Scaling [http://www.mongodb.com/lp/contact/planning-for-scale?jmp=docs]

	MongoDB Consulting Package [https://www.mongodb.com/products/consulting?jmp=docs]

	Quick Reference Cards [https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs]

 Administration

Administration

The administration documentation addresses the ongoing operation and
maintenance of MongoDB instances and deployments. This documentation
includes both high level overviews of these concerns as well as
tutorials that cover specific procedures and processes for operating
MongoDB.

Note

For a simple way to run, monitor, and maintain cloud-hosted MongoDB
deployments, try MongoDB Atlas [https://www.mongodb.com/cloud/atlas?utm_source=administration&utm_campaign=20-docs-in-20-days&utm_medium=docs].

If you have an existing MongoDB database and are looking to decrease the
administrative burden, you can learn how to migrate it into Atlas here [https://www.mongodb.com/cloud/atlas/migrate?utm_source=administration&utm_campaign=20-docs-in-20-days-migrations&utm_medium=docs].

 Data Center Awareness

Data Center Awareness

On this page

	Further Reading

	Additional Resource

MongoDB provides a number of features that allow application
developers and database administrators to customize the behavior of a
sharded cluster or replica set deployment so that
MongoDB may be more “data center aware,” or allow operational
and location-based separation.

MongoDB also supports workload isolation based on functional parameters, to ensure
that certain mongod instances are only used for reporting workloads
or that certain high-frequency portions of a sharded collection only exist on
specific shards.

The following documents, found either in this section or other sections
of this manual, provide information on customizing a deployment for
operation- and location-based separation:

	Workload Isolation in MongoDB Deployments

	MongoDB lets you specify that certain application operations use
certain mongod instances.

	Zones

	A zone represents one or more ranges of shard key values for a
sharded collection. MongoDB routes reads and writes for sharded
data covered by a zone only to shards inside that zone. For use in
managing data distribution and deployment patterns.

	Manage Shard Zones

	Administrative tasks related to configuring zones in sharded
clusters

Further Reading

	The Write Concern and Read Preference
documents, which address capabilities related to data center
awareness.

	Deploy a Geographically Redundant Replica Set.

Additional Resource

	Whitepaper: MongoDB Multi-Data Center Deployments [http://www.mongodb.com/lp/white-paper/multi-dc?jmp=docs]

	Webinar: Multi-Data Center Deployment [https://www.mongodb.com/presentations/webinar-multi-data-center-deployment?jmp=docs]

 Storage

Storage

The storage engine is the primary
component of MongoDB responsible for managing data. MongoDB provides a
variety of storage engines, allowing you to choose one most suited to
your application.

The journal is a log that helps the database recover in the
event of a hard shutdown. There are several configurable options that
allows the journal to strike a balance between performance and
reliability that works for your particular use case.

GridFS is a versatile storage system that is suited to
handling large files, such as those exceeding the 16 MB document size
limit.

	Storage Engines
	WiredTiger Storage Engine

	MMAPv1 Storage Engine

	In-Memory Storage Engine

	Journaling

	GridFS

	FAQ: MongoDB Storage

 Frequently Asked Questions

Frequently Asked Questions

	FAQ: MongoDB Fundamentals
	What platforms does MongoDB support?

	Is MongoDB offered as a hosted service?

	How does a collection differ from a table?

	How do I create a database and a collection?

	How do I define or alter the collection schema?

	Does MongoDB support SQL?

	Does MongoDB support transactions?

	Does MongoDB handle caching?

	How does MongoDB address SQL or Query injection?

	FAQ: Indexes
	How do I create an index?

	How does an index build affect database performance?

	How do I see what indexes exist on a collection?

	How can I see if a query uses an index?

	How do I determine which fields to index?

	How can I see the size of an index?

	How do write operations affect indexes?

	FAQ: Concurrency
	What type of locking does MongoDB use?

	How granular are locks in MongoDB?

	How do I see the status of locks on my mongod instances?

	Does a read or write operation ever yield the lock?

	What locks are taken by some common client operations?

	Which administrative commands lock the database?

	Does a MongoDB operation ever lock more than one database?

	How does sharding affect concurrency?

	How does concurrency affect a replica set primary?

	How does concurrency affect secondaries?

	Does MongoDB support transactions?

	What isolation guarantees does MongoDB provide?

	FAQ: Sharding with MongoDB
	Is sharding appropriate for a new deployment?

	Can I change the shard key after sharding a collection?

	Why are my documents not distributed across the shards?

	How does mongos detect changes in the sharded cluster configuration?

	What does writebacklisten in the log mean?

	How does mongos use connections?

	FAQ: Replication and Replica Sets
	What kind of replication does MongoDB support?

	Does replication work over the Internet and WAN connections?

	Can MongoDB replicate over a “noisy” connection?

	Why use journaling if replication already provides data redundancy?

	What information do arbiters exchange with the rest of the replica set?

	Is it normal for replica set members to use different amounts of disk space?

	Can I rename a replica set?

	FAQ: MongoDB Storage
	Storage Engine Fundamentals

	Can you mix storage engines in a replica set?

	WiredTiger Storage Engine

	MMAPv1 Storage Engine

	Can I manually pad documents to prevent moves during updates?

	Data Storage Diagnostics

	FAQ: MongoDB Diagnostics
	Where can I find information about a mongod process that stopped running unexpectedly?

	Does TCP keepalive time affect MongoDB Deployments?

	Why does MongoDB log so many “Connection Accepted” events?

	What tools are available for monitoring MongoDB?

	Memory Diagnostics for the MMAPv1 Storage Engine

	Memory Diagnostics for the WiredTiger Storage Engine

	Sharded Cluster Diagnostics

 Reference

Reference

	Operators

	Documentation of query, update, projection, and aggregation
framework operators.

	Database Commands

	Documentation of all MongoDB database commands operations, syntax, and use.

	mongo Shell Methods

	Documentation of all JavaScript methods and helpers in the
mongo shell.

	MongoDB Package Components

	Documentation of mongod and mongos
and all other tools distributed with MongoDB.

	Configuration File Options

	Full documentation of the configuration file and available
run-time operations.

	MongoDB Server Parameters

	Documentation of all mongod and
mongos parameters that are available in the
setParameter (command) and setParameter
run-time interface.

	MongoDB Limits and Thresholds

	A list of important limits and thresholds imposed by MongoDB.

	Explain Results

	Documentation on information returned from explain operations.

	System Collections

	Describes the collections that MongoDB reserves for internal use.

	Connection String URI Format

	The complete specification of the MongoDB connection string format
that the drivers use to describe connections to MongoDB
deployments.

	Collation

	Description of collation fields as well as supported languages and
associated locales for collation.

	MongoDB Wire Protocol

	Description of the MongoDB Wire Protocol.

	Log Messages

	Describes the components of log messages.

	Exit Codes and Statuses

	Details the codes and statuses that MongoDB returns when exiting.

	Glossary

	A glossary of common terms and concepts specific to MongoDB.

	Default MongoDB Port

	List of default ports used by MongoDB.

	Server Sessions

	Describes server sessions.

See also

The Index may provide useful insight into the
reference material in this manual. The
Data Model Reference, Sharding Reference,
Replication Reference, and Security Reference
contain additional reference material.

	Operators
	Query and Projection Operators

	Update Operators

	Aggregation Pipeline Stages
	$addFields (aggregation)

	$bucket (aggregation)

	$bucketAuto (aggregation)

	$collStats (aggregation)

	$count (aggregation)

	$currentOp (aggregation)

	$facet (aggregation)

	$geoNear (aggregation)

	$graphLookup (aggregation)

	$group (aggregation)

	$indexStats (aggregation)

	$limit (aggregation)

	$listLocalSessions

	$listSessions

	$lookup (aggregation)

	$match (aggregation)

	$out (aggregation)

	$project (aggregation)

	$redact (aggregation)

	$replaceRoot (aggregation)

	$sample (aggregation)

	$skip (aggregation)

	$sort (aggregation)

	$sortByCount (aggregation)

	$unwind (aggregation)

	Aggregation Pipeline Operators
	$abs (aggregation)

	$add (aggregation)

	$addToSet (aggregation)

	$allElementsTrue (aggregation)

	$and (aggregation)

	$anyElementTrue (aggregation)

	$arrayElemAt (aggregation)

	$arrayToObject (aggregation)

	$avg (aggregation)

	$ceil (aggregation)

	$cmp (aggregation)

	$concat (aggregation)

	$concatArrays (aggregation)

	$cond (aggregation)

	$convert (aggregation)

	$dateFromParts (aggregation)

	$dateToParts (aggregation)

	$dateFromString (aggregation)

	$dateToString (aggregation)

	$dayOfMonth (aggregation)

	$dayOfWeek (aggregation)

	$dayOfYear (aggregation)

	$divide (aggregation)

	$eq (aggregation)

	$exp (aggregation)

	$filter (aggregation)

	$first (aggregation)

	$floor (aggregation)

	$gt (aggregation)

	$gte (aggregation)

	$hour (aggregation)

	$ifNull (aggregation)

	$in (aggregation)

	$indexOfArray (aggregation)

	$indexOfBytes (aggregation)

	$indexOfCP (aggregation)

	$isArray (aggregation)

	$isoDayOfWeek (aggregation)

	$isoWeek (aggregation)

	$isoWeekYear (aggregation)

	$last (aggregation)

	$let (aggregation)

	$literal (aggregation)

	$ln (aggregation)

	$log (aggregation)

	$log10 (aggregation)

	$lt (aggregation)

	$lte (aggregation)

	$ltrim (aggregation)

	$map (aggregation)

	$max (aggregation)

	$mergeObjects (aggregation)

	$meta (aggregation)

	$min (aggregation)

	$millisecond (aggregation)

	$minute (aggregation)

	$mod (aggregation)

	$month (aggregation)

	$multiply (aggregation)

	$ne (aggregation)

	$not (aggregation)

	$objectToArray (aggregation)

	$or (aggregation)

	$pow (aggregation)

	$push (aggregation)

	$range (aggregation)

	$reduce (aggregation)

	$reverseArray (aggregation)

	$rtrim (aggregation)

	$second (aggregation)

	$setDifference (aggregation)

	$setEquals (aggregation)

	$setIntersection (aggregation)

	$setIsSubset (aggregation)

	$setUnion (aggregation)

	$size (aggregation)

	$slice (aggregation)

	$split (aggregation)

	$sqrt (aggregation)

	$stdDevPop (aggregation)

	$stdDevSamp (aggregation)

	$strcasecmp (aggregation)

	$strLenBytes (aggregation)

	$strLenCP (aggregation)

	$substr (aggregation)

	$substrBytes (aggregation)

	$substrCP (aggregation)

	$subtract (aggregation)

	$sum (aggregation)

	$switch (aggregation)

	$toBool (aggregation)

	$toDate (aggregation)

	$toDecimal (aggregation)

	$toDouble(aggregation)

	$toInt (aggregation)

	$toLong (aggregation)

	$toObjectId (aggregation)

	$toString (aggregation)

	$toLower (aggregation)

	$toUpper (aggregation)

	$trim (aggregation)

	$trunc (aggregation)

	$type (aggregation)

	$week (aggregation)

	$year (aggregation)

	$zip (aggregation)

	Query Modifiers
	$comment

	$explain

	$hint

	$maxScan

	$max

	$maxTimeMS

	$min

	$orderby

	$query

	$returnKey

	$showDiskLoc

	$natural

	Database Commands

	mongo Shell Methods

	MongoDB Package Components
	mongod

	mongos

	mongo

	mongod.exe

	mongos.exe

	mongodump

	mongorestore

	bsondump

	mongoimport

	mongoexport

	mongostat

	mongotop

	mongoreplay

	mongoldap

	mongofiles

	install_compass

	Configuration File Options

	MongoDB Server Parameters

	MongoDB Limits and Thresholds

	Explain Results

	System Collections

	Connection String URI Format

	Collation

	MongoDB Wire Protocol

	Log Messages

	Exit Codes and Statuses

	Glossary

	Default MongoDB Port

	Server Sessions

 Release Notes

Release Notes

Always install the latest, stable version of MongoDB. See
MongoDB Version Numbers for more information.

See the following release notes for an account of the changes in major
versions. Release notes also include instructions for upgrade.

Current Stable Release

(4.0-series)

	Release Notes for MongoDB 4.0

Previous Stable Releases

	Release Notes for MongoDB 3.6

	Release Notes for MongoDB 3.4

	Release Notes for MongoDB 3.2

	Release Notes for MongoDB 3.0

	Release Notes for MongoDB 2.6

	Release Notes for MongoDB 2.4

	Release Notes for MongoDB 2.2

	Release Notes for MongoDB 2.0

	Release Notes for MongoDB 1.8

	Release Notes for MongoDB 1.6

	Release Notes for MongoDB 1.4

	Release Notes for MongoDB 1.2.x

MongoDB Version Numbers

For MongoDB 2.4.1, 2.4 refers to the release series and .1 refers
to the revision. The second component of the release series (e.g. 4
in 2.4.1) describes the type of release series. Release series ending
with even numbers (e.g. 4 above) are stable and ready for
production, while odd numbers are for development and testing only.

Generally, changes in the release series (e.g. 2.2 to 2.4)
mark the introduction of new features that may break backwards
compatibility. Changes to the revision number mark the release bug
fixes and backwards-compatible changes.

Important

Always upgrade to the latest stable revision of your
release series.

The version numbering system for MongoDB differs from the system
used for the MongoDB drivers. Drivers use only the first number to indicate
a major version. For details, see Driver Version Numbers.

Example

Version numbers

	2.0.0 : Stable release.

	2.0.1 : Revision.

	2.1.0 : Development release for testing only. Includes new features and changes for
testing. Interfaces and stability may not be compatible in
development releases.

	2.2.0 : Stable release. This is a culmination of the 2.1.x
development series.

 Index

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	
 	

 About MongoDB Documentation

About MongoDB Documentation

On this page

	License

	Editions

	Version and Revisions

	Report an Issue or Make a Change Request

	Contribute to the Documentation

The MongoDB Manual [https://docs.mongodb.com/manual/#] contains
comprehensive documentation on MongoDB. This page describes the
manual’s licensing, editions, and versions, and describes how to make a
change request and how to contribute to the manual.

License

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]

© MongoDB, Inc. 2008-2018

Editions

In addition to the MongoDB Manual [https://docs.mongodb.com/manual/#], you can
also access this content in the following editions:

	HTML tar.gz [http://docs.mongodb.com/v4.0/manual.tar.gz]

	EPUB Format [http://docs.mongodb.com/v4.0/MongoDB-manual.epub]

MongoDB Reference documentation is also available as part of dash [http://kapeli.com/dash]. You can also access the MongoDB
Man Pages [http://docs.mongodb.com/v4.0/manpages.tar.gz] which are also distributed with the
official MongoDB Packages.

Version and Revisions

This version of the manual reflects version 4.0 of MongoDB.

See the MongoDB Documentation Project Page [https://docs.mongodb.com]
for an overview of all editions and output formats of the MongoDB
Manual. You can see the full revision history and track ongoing
improvements and additions for all versions of the manual from its GitHub
repository [https://github.com/mongodb/docs].

This edition reflects “v4.0” branch of the documentation
as of the “89897276c9f0f4222b97406a824e8e73b28346f0” revision. This branch is explicitly accessible
via “https://docs.mongodb.com/v4.0” and you can always reference the commit of the
current manual in the release.txt [http://docs.mongodb.com/v4.0/release.txt] file.

The most up-to-date, current, and stable version of the manual is
always available at “https://docs.mongodb.com/manual/”.

Report an Issue or Make a Change Request

To report an issue with this manual or to make a change request, file
a ticket at the
MongoDB DOCS Project on Jira [https://jira.mongodb.org/browse/DOCS].

Contribute to the Documentation

The entire documentation source for this manual is available in the
mongodb/docs repository [https://github.com/mongodb/docs],
which is one of the
MongoDB project repositories on GitHub [http://github.com/mongodb].

To contribute to the documentation, you can open a
GitHub account [https://github.com/], fork the
mongodb/docs repository [https://github.com/mongodb/docs],
make a change, and issue a pull request.

In order for the documentation team to accept your change, you must
complete the
MongoDB Contributor Agreement [http://www.mongodb.com/contributor].

You can clone the repository by issuing the following command at your
system shell:

copy

git clone git://github.com/mongodb/docs.git

About the Documentation Process

The MongoDB Manual uses Sphinx [http://sphinx-doc.org//], a
sophisticated documentation engine built upon Python Docutils [http://docutils.sourceforge.net/]. The original reStructured Text [http://docutils.sourceforge.net/rst.html] files, as well as all
necessary Sphinx extensions and build tools, are available in the same
repository as the documentation.

For more information on the MongoDB documentation process, see the
Meta Documentation [https://docs.mongodb.com/meta/].

If you have any questions, please feel free to open a Jira Case [https://jira.mongodb.org/browse/DOCS].

 The MongoDB 4.0 Manual

The MongoDB 4.0 Manual

MongoDB 4.0 Released

For new features in MongoDB 4.0, see Release Notes for MongoDB 4.0.

To download the MongoDB 4.0, go to the MongoDB Download Center [https://www.mongodb.com/download-center?jmp=docs#production]

Welcome to the MongoDB 4.0 Manual! MongoDB is an open-source,
document database designed for ease of development and scaling. The
Manual introduces key concepts in MongoDB, presents the query language,
and provides operational and administrative considerations and
procedures as well as a comprehensive reference section. 1

Getting Started

MongoDB provides a Getting Started Guide [https://docs.mongodb.com/getting-started/shell] in the
following editions.

	mongo Shell Edition [https://docs.mongodb.com/getting-started/shell]

Node.JS Edition [http://mongodb.github.io/node-mongodb-native/3.1/quick-start/quick-start/]

	Python Edition [https://docs.mongodb.com/getting-started/python]

C++ Edition [https://mongodb.github.io/mongo-cxx-driver/mongocxx-v3/tutorial/]

	Java Edition [https://mongodb.github.io/mongo-java-driver/]

C# Edition [http://mongodb.github.io/mongo-csharp-driver/]

	Ruby Edition [https://docs.mongodb.com/ruby-driver/current/quick-start/]

Once you complete the Getting Started Guide, you may find the following topics
useful.

	Introduction

	Developers

	Administrators

	Reference

	Introduction to MongoDB

Installation Guides

Databases and Collections

Documents

	CRUD Operations

Aggregation

SQL to MongoDB

Indexes

	Production Notes

Replica Sets

Sharded Clusters

MongoDB Security

	Shell Methods

Query Operators

Reference

Glossary

Support

	Community Support

	You can get help with MongoDB through various community-supported
forums, such as Stack Overflow [http://stackoverflow.com/questions/tagged/mongodb] as well as our mailing list [https://groups.google.com/forum/#!forum/mongodb-user] and Slack
channel [https://launchpass.com/mongo-db?jmp=docs].
For details, see Community Support.

	Commercial Support

	MongoDB, Inc. [https://www.mongodb.com?jmp=docs] also offers commercial support and services. For
details, see Commercial Support.

Issues

For instructions on how to file a JIRA ticket for the MongoDB server or
one of the related projects, see
https://github.com/mongodb/mongo/wiki/Submit-Bug-Reports.

Community

Getting involved in the MongoDB community is a great way to build
relationships with other talented and like minded engineers, increase
awareness for the interesting work that you are doing, and sharpen your
skills. To learn about the MongoDB community, see
Get Involved with MongoDB [http://www.mongodb.org/get-involved?jmp=docs].

Learning MongoDB

In addition to the documentation, there are many ways to learn to use
MongoDB. You can:

	Enroll in a free online course at MongoDB University [https://university.mongodb.com?jmp=docs]

	Browse the archive of MongoDB Presentations [https://www.mongodb.com/presentations?jmp=docs]

	Join a local MongoDB User Group (MUG) [https://www.mongodb.org/user-groups?jmp=docs]

	Attend an upcoming MongoDB event [http://www.mongodb.com/events?jmp=docs] or
webinar [http://www.mongodb.com/webinars?jmp=docs]

	Read the MongoDB blog [http://www.mongodb.com/blog?jmp=docs]

	Download the Architecture Guide [https://www.mongodb.com/lp/whitepaper/architecture-guide?jmp=docs]

Licensing

The manual is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 United States License [http://creativecommons.org/licenses/by-nc-sa/3.0/us/]

For information on MongoDB licensing, see MongoDB Licensing [https://www.mongodb.org/about/licensing/].

Additional Resources

	MongoDB, Inc. [https://www.mongodb.com?jmp=docs]

	The company behind MongoDB.

	MongoDB Atlas [https://www.mongodb.com/cloud?jmp=docs]

	Database as a service.

	MongoDB Cloud Manager [https://www.mongodb.com/cloud/cloud-manager/?jmp=docs]

	A cloud-based hosted operations management solution for MongoDB.

	MongoDB Ops Manager [https://docs.opsmanager.mongodb.com/current/?jmp=docs]

	Enterprise operations management solution for MongoDB: includes
Automation, Backup, and Monitoring.

	MongoDB Ecosystem [https://docs.mongodb.com/ecosystem/?jmp=docs]

	The documentation available for the drivers, frameworks, tools,
and services for use with MongoDB.

	1

	The manual is also available as HTML tar.gz [http://docs.mongodb.com/v4.0/manual.tar.gz] and EPUB [http://docs.mongodb.com/v4.0/MongoDB-manual.epub]

 Technical Support

Technical Support

On this page

	MongoDB Manual and Guides

	Community Support

	Commercial Support

Discuss, learn about, and get help with MongoDB.

MongoDB Manual and Guides

	MongoDB Manual [https://docs.mongodb.com/manual]

	Getting Started with MongoDB

Community Support

Discuss, learn about, and get help with MongoDB through these
community-supported forums. Also check out office hours in your area.

	Stack Overflow [http://stackoverflow.com/questions/tagged/mongodb]: A community
forum for specific programming questions with factual, rather than
subjective, answers. For more ideas on framing your question
appropriately, see How to Ask [http://stackoverflow.com/questions/how-to-ask].

	ServerFault [http://serverfault.com/questions/tagged/mongodb]: A
community forum for questions about server administration and
networking, such as hardware or operating system tuning.

	Community Support Forum [https://groups.google.com/forum/#!forum/mongodb-user]: A community forum
best suited for open-ended, opinion-based, or general questions about
MongoDB. You can post and view the forum via the Google Groups web
interface or subscribe to updates via email.

	MongoDB Community on Slack [https://launchpass.com/mongo-db?jmp=docs]

	IRC Chat and Support (irc://irc.freenode.net/#mongodb)

Commercial Support

MongoDB Inc. provides products and services to help get you to
production faster with less effort and risk, including:

	MongoDB Enterprise [https://www.mongodb.com/lp/contact/enterprise-org?jmp=docs]
provides a management platform for automating, monitoring, and
backing up MongoDB deployments; advanced security; support from
MongoDB engineers; on-demand training; platform certification; and a
commercial license.

	MongoDB Cloud Manager [https://www.mongodb.com/cloud/cloud-manager?jmp=docs] offers
automated deployment and zero-downtime upgrades, disaster recovery
and continuous monitoring in the cloud.

	MongoDB Professional [https://www.mongodb.com/products/mongodb-professional?jmp=docs]
helps you manage your deployment and keep it running smoothly. It
includes support from MongoDB engineers as well as access to MongoDB
Cloud Manager [https://www.mongodb.com/cloud/cloud-manager?jmp=docs].

	Development Support [https://www.mongodb.com/products/development-support?jmp=docs]
helps you move swiftly through application development by providing
expert support, on-demand training, a healthcheck with MongoDB
consultants and access to the advanced features.

	MongoDB Consulting [https://www.mongodb.com/products/consulting?jmp=docs]
helps you get to production quickly, with packaged service offerings
that add value at critical points through the project lifecycle,
such as schema design and performance tuning.

	MongoDB Training [https://www.mongodb.com/products/training?jmp=docs]
provides certification and education for developers and DBAs with
free online classes, in person classes in major cities all over the
world, and private, customized offerings in customer facilities.

 MongoDB Tutorials

MongoDB Tutorials

This page lists the tutorials available as part of the MongoDB
Manual. In addition to these tutorial in the manual,
MongoDB provides Getting Started Guides in
various driver editions. If there is a process or pattern that you
would like to see included here, please open a Jira Case [https://jira.mongodb.org/browse/DOCS].

Installation

	Install MongoDB Community Edition on Red Hat Enterprise or CentOS Linux

	Install MongoDB Community Edition on Debian

	Install MongoDB Community Edition on Ubuntu

	Install MongoDB Community Edition on Amazon Linux

	Install MongoDB Community Edition on SUSE

	Install MongoDB Community Edition on macOS

	Install MongoDB Community Edition on Windows

Administration

Replica Sets

	Deploy a Replica Set

	Convert a Standalone to a Replica Set

	Add Members to a Replica Set

	Remove Members from Replica Set

	Replace a Replica Set Member

	Adjust Priority for Replica Set Member

	Resync a Member of a Replica Set

	Deploy a Geographically Redundant Replica Set

	Change the Size of the Oplog

	Force a Member to Become Primary

	Change Hostnames in a Replica Set

	Add an Arbiter to Replica Set

	Convert a Secondary to an Arbiter

	Configure a Secondary’s Sync Target

	Configure a Delayed Replica Set Member

	Configure a Hidden Replica Set Member

	Configure Non-Voting Replica Set Member

	Prevent Secondary from Becoming Primary

	Configure Replica Set Tag Sets

	Manage Chained Replication

	Reconfigure a Replica Set with Unavailable Members

	Recover a Standalone after an Unexpected Shutdown

	Troubleshoot Replica Sets

Sharding

	Deploy a Sharded Cluster

	Convert a Replica Set to a Sharded Cluster

	Add Shards to a Cluster

	Remove Shards from an Existing Sharded Cluster

	Replace a Config Server

	Migrate a Sharded Cluster to Different Hardware

	Back Up Cluster Metadata

	Back Up a Sharded Cluster with File System Snapshots

	Back Up a Sharded Cluster with Database Dumps

	Restore a Sharded Cluster

	Schedule Backup Window for Sharded Clusters

	Manage Shard Zones

Basic Operations

	Use Database Commands

	Recover a Standalone after an Unexpected Shutdown

	Expire Data from Collections by Setting TTL

	Database Profiler

	Rotate Log Files

	Manage mongod Processes

	Back Up and Restore with MongoDB Tools

	Back Up and Restore with Filesystem Snapshots

Security

	Configure Linux iptables Firewall for MongoDB

	Configure Windows netsh Firewall for MongoDB

	Enable Auth

	Manage Users and Roles

	Configure MongoDB with Kerberos Authentication on Linux

	Create a Vulnerability Report

Development Patterns

	Aggregation with the Zip Code Data Set

	Aggregation with User Preference Data

	Model Data to Support Keyword Search

	Perform Incremental Map-Reduce

	Troubleshoot the Map Function

	Troubleshoot the Reduce Function

	Store a JavaScript Function on the Server

Text Search Patterns

	Specify a Language for Text Index

	Specify Name for text Index

	Control Search Results with Weights

	Limit the Number of Entries Scanned

Data Modeling Patterns

	Model One-to-One Relationships with Embedded Documents

	Model One-to-Many Relationships with Embedded Documents

	Model One-to-Many Relationships with Document References

	Model Data for Atomic Operations

	Model Tree Structures with Parent References

	Model Tree Structures with Child References

	Model Tree Structures with Materialized Paths

	Model Tree Structures with Nested Sets

_images/atlas-create-organization.png
Account Settings

Profile Personalization Organizations

— Organizations
Create Organization

v Name and Service v Add Members

Name Your Organization

GettingStarted

Select Cloud Service

Public API Access

Features
Automated database configuration

v

Continuous backup and point-in-time
recovery

© MongoDB Atlas

) Cloud Manager

v

_images/atlas-create-project.png
context GETTINGSTARTED > PROJECTS

Create a Project

«

[GettingStarted

oRcaNzaTON
[Projects Name Your Project v Add Members =
A, Users.
R Teams Name Your Project
£ Settings Project names have to be unique within the organization (and other restrictions).

Project Name
¥ Orgs and Projects J

& Docs

cuer | [0

_images/atlas-create-cluster.png
Shared Clusters

© Mo Shared RAM 512 MB Storage Shared VCPUs. FREE

M2 Shared RAM 2GBStorage Shared VCPUs from $0.012/hr

M5 Shared RAM 5GBStorage Shared VCPUs from $0.035/hr

_images/atlas-project-add-members.png
context

[GettingStarted

«

oRcaNzaTON
[Projects
A, Users.
A Teams
£ Settings

i Orgs and Projects
& Docs

GETTINGSTARTED > PROJECTS

Create a Project

 Name Your Project v Add Members

Add Members and Set Permissions

Invite new o exiting users via email address.

Give your members access permissions below.

someone@example.com (you) Project Owner

~ GoBack

Cancel

_images/atlas-setup-cluster-security.png
Clusters

Overview

Security

MongoDB Users

1P Whitelist

Peering

Enterprise Security

Build a New Cluster

4 ADD NEW USER

_images/compass-analyze-inventory-docs.png
test.inventory

Documents Schema

socumers 10

Explain Plan

TOTAL SIZE AVG. SIZE

6488

Indexes

woexes 1

TOTALSIZE AVG. SIZE
24.0KB 24.0KB

Validation

{ field: value')

» opions | ML

inserTpocument RCVIRESTES

TaBLE

Displaying documents 1-100f 100 < > ¢C

inventory
_id bouble

1

2 2

ERE)

4 la

s s

66

77

58

99

0 10

String

type String

“food"
“food"
“paper”
“paper"
“food"
“toys"
“apparel”
“apparel”
“toys"

-

quantity Dauble

s00
100
200
150
300
s00
250
400
so

s

_images/compass-array-elem-match.png
TomLsize

test.inventory oocuuens 5 5608

DocUMENTS scHEmA EXPLAIN PLAN INDEXES

e size
1128

VALIDATION

woexes 1

ed")

(@D <o

» opTIONS

TS view | = us

& e

_id: ObjectId("sa14a17ca769896e78222e6e")
ten: *journal”
aty: 25
~ tags: Array

0 "bani

v
> din_en: Array

_id: ObjectId("5a14a17ca76989678222e6 ")
Tten: “notebook

aty: 50

> din_en: Array

_id: ObjectId("sa14a17ca76989678222670")
tem: “paper”
aty: 100

~ tags: Array

> din_en: Array

_id: ObjectId("5a14a17ca76989678222671")
ten: “planner”
aty: 75
~ tags: Array
0 "bani
L et
> din_en: Array

TomLsizE Avasize
24.0KB 24.0KB

) neser o

4 documents. ©

_images/compass-array-match-all.png
test.inventory

DocUMENTS scHEmA

o size
oocumens 5 5608

EXPLAIN PLAN INDEXES

e size

TomLsizE Avasize

1128 woees 1 240kB 240K

VALIDATION

red”, "blank’] } }

» opTIONS

TS view | = us

& e

_id: ObjectId("sa14a17ca769896e78222e6e")

R
aty: 25

~ tags: Array

"l

L et

> din_en: Array

Journal”

_id: ObjectId("5a14a17ca76989678222e6 ")

Tte
aty: 50

‘notebaok”

“blank”
> din_en: Array

_id: ObjectId("5a14a17ca769896e78222¢7e

tem: “paper”
aty: 100
~ tags: Array

> din_en: Array

_id: ObjectId("5a14a17ca76989678222671")

ten: “planner”
aty: 75
~ tags: Array

> din_en: Array

) neser o

4 documents. ©

_images/compass-array-compound-filter.png
test.inventory

o size
oocumens 5 5608

e size

TomLsizE Avasize

1128 woees 1 240kB 240K

oocuments schew ExpLaN LN noexes vauDATION
(@D € aincns € sots 15, s1e: 203) » opons

IS view | = Ust | @ maie

_id: ObjectId("sa14a17ca79896e78222e6e")
tem: *journal”
aty: 25

> tags: Array

~ din_cn: Array

_id: ObjectId("5a14a17ca7698967822266 ")
Tten: "notebook”
aty: 50
> tags: Array
~ din_cn: Array
04
2

_id: ObjectId("5a14a17ca769896e78222¢7e
Ttem: "pape
aty: 100
> tags: Array
~ din_cn: Array
04
i1

_id: ObjectId("5a14a17ca76989678222672")
Ttem: "postcard”
aty: 45
> tags: Array
~ din_cn: Array
010
15.25

) neser o

4 documents. ©

_images/compass-array-compound-multiple-criteria.png
TomLSIZE AvG.SizE TomLsizE Avasize

test.inventory vocumems 5 5608 1125 moexes 1 240K 240K
oocuments scHemn ExpLapLAN oexes wauDATION

(@EED) { din_cn: { selentiatch: { sgt: 22, $1t: 30 3 3 } » opmo