Fix This Page
Navigation

Spark Connector Scala Guide

Source Code

For the source code that contains the examples below, see Introduction.scala.

Prerequisites

  • Basic working knowledge of MongoDB and Apache Spark. Refer to the MongoDB documentation and Spark documentation for more details.
  • Running MongoDB instance (version 2.6 or later).
  • Spark 2.0.x.
  • Scala 2.11.x

Getting Started

Spark Shell

When starting the Spark shell, specify:

  • the --packages option to download the MongoDB Spark Connector package. The following package is available:

    • mongo-spark-connector_2.11 for use with Scala 2.11.x
  • the --conf option to configure the MongoDB Spark Connnector. These settings configure the SparkConf object.

    Note

    When specifying the Connector configuration via SparkConf, you must prefix the settings appropriately. For details and other available MongoDB Spark Connector options, see the Configuration Options.

For example,

./bin/spark-shell --conf "spark.mongodb.input.uri=mongodb://127.0.0.1/test.myCollection?readPreference=primaryPreferred" \
                  --conf "spark.mongodb.output.uri=mongodb://127.0.0.1/test.myCollection" \
                  --packages org.mongodb.spark:mongo-spark-connector_2.11:2.0.0
  • The spark.mongodb.input.uri specifies the MongoDB server address (127.0.0.1), the database to connect (test), and the collection (myCollection) from which to read data, and the read preference.
  • The spark.mongodb.output.uri specifies the MongoDB server address (127.0.0.1), the database to connect (test), and the collection (myCollection) to which to write data. Connects to port 27017 by default.
  • The packages option specifies the Spark Connector’s Maven coordinates, in the format groupId:artifactId:version.

Import the MongoDB Connector Package

Enable MongoDB Connector specific functions and implicits for the SparkSession and RDD (Resilient Distributed Dataset) by importing the following package in the Spark shell:

import com.mongodb.spark._

Connect to MongoDB

Connection to MongoDB happens automatically when an RDD action requires a read from MongoDB or a write to MongoDB.

Self-Contained Scala Application

Dependency Management

Provide the Spark Core, Spark SQL, and MongoDB Spark Connector dependencies to your dependency management tool.

The following excerpt demonstrates how to include these dependencies in a SBT build.scala file:

scalaVersion := "2.11.7",
libraryDependencies ++= Seq(
  "org.mongodb.spark" %% "mongo-spark-connector" % "2.0.0",
  "org.apache.spark" %% "spark-core" % "2.0.0",
  "org.apache.spark" %% "spark-sql" % "2.0.0"
)

Configuration

When specifying the Connector configuration via SparkSession, you must prefix the settings appropriately. For details and other available MongoDB Spark Connector options, see the Configuration Options.

package com.mongodb

object GettingStarted {

  def main(args: Array[String]): Unit = {

    /* Create the SparkSession.
     * If config arguments are passed from the command line using --conf,
     * parse args for the values to set.
     */
    import org.apache.spark.sql.SparkSession

    val spark = SparkSession.builder()
      .master("local")
      .appName("MongoSparkConnectorIntro")
      .config("spark.mongodb.input.uri", "mongodb://127.0.0.1/test.myCollection")
      .config("spark.mongodb.output.uri", "mongodb://127.0.0.1/test.myCollection")
      .getOrCreate()

  }
}

MongoSpark Helper

If you require granular control over your configuration, then the MongoSpark companion provides a builder() method for configuring all aspects of the Mongo Spark Connector. It also provides methods to create an RDD, DataFrame or Dataset.

Troubleshooting

If you get a java.net.BindException: Can't assign requested address,

  • Check to ensure that you do not have another Spark shell already running.

  • Try setting the SPARK_LOCAL_IP environment variable; e.g.

    export SPARK_LOCAL_IP=127.0.0.1
    
  • Try including the following option when starting the Spark shell:

    --driver-java-options "-Djava.net.preferIPv4Stack=true"
    

If you have errors running the examples in this tutorial, you may need to clear your local ivy cache (~/.ivy2/cache/org.mongodb.spark and ~/.ivy2/jars).