Navigation
This is an upcoming (i.e. in progress) version of the manual.

$unwind (aggregation)

Definition

$unwind

Deconstructs an array field from the input documents to output a document for each element. Each output document is the input document with the value of the array field replaced by the element.

Syntax

You can pass a field path operand or a document operand to unwind an array field.

Field Path Operand

You can pass the array field path to $unwind. When using this syntax, $unwind does not output a document if the field value is null, missing, or an empty array.

{ $unwind: <field path> }

When you specify the field path, prefix the field name with a dollar sign $ and enclose in quotes.

Document Operand with Options

New in version 3.2.

You can pass a document to $unwind to specify various behavior options.

{
  $unwind:
    {
      path: <field path>,
      includeArrayIndex: <string>,
      preserveNullAndEmptyArrays: <boolean>
    }
}
Field Type Description
path string

Field path to an array field. To specify a field path, prefix the field name with a dollar sign $ and enclose in quotes.

includeArrayIndex string

Optional. The name of a new field to hold the array index of the element. The name cannot start with a dollar sign $.

preserveNullAndEmptyArrays boolean

Optional.

  • If true, if the path is null, missing, or an empty array, $unwind outputs the document.
  • If false, if path is null, missing, or an empty array, $unwind does not output a document.

The default value is false.

Behaviors

Non-Array Field Path

Changed in version 3.2: $unwind stage no longer errors on non-array operands. If the operand does not resolve to an array but is not missing, null, or an empty array, $unwind treats the operand as a single element array. If the operand is null, missing, or an empty array, the behavior of $unwind depends on the value of the preserveNullAndEmptyArrays option.

Previously, if a value in the field specified by the field path is not an array, db.collection.aggregate() generates an error.

Missing Field

If you specify a path for a field that does not exist in an input document or the field is an empty array, $unwind, by default, ignores the input document and will not output documents for that input document.

New in version 3.2: To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.

Examples

Unwind Array

From the mongo shell, create a sample collection named inventory with the following document:

db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })

The following aggregation uses the $unwind stage to output a document for each element in the sizes array:

db.inventory.aggregate( [ { $unwind : "$sizes" } ] )

The operation returns the following results:

{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

Each document is identical to the input document except for the value of the sizes field which now holds a value from the original sizes array.

includeArrayIndex and preserveNullAndEmptyArrays

New in version 3.2.

From the mongo shell, create a sample collection named inventory2 with the following documents:

db.inventory2.insertMany([
  { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
  { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
  { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
  { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
  { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

The following $unwind operations are equivalent and return a document for each element in the sizes field. If the sizes field does not resolve to an array but is not missing, null, or an empty array, $unwind treats the non-array operand as a single element array.

db.inventory2.aggregate( [ { $unwind: "$sizes" } ] )
db.inventory2.aggregate( [ { $unwind: { path: "$sizes" } } ] )

The operation returns the following documents:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }

includeArrayIndex

The following $unwind operation uses the includeArrayIndex option to include the array index in the output.

db.inventory2.aggregate( [
  {
    $unwind:
      {
        path: "$sizes",
        includeArrayIndex: "arrayIndex"
      }
   }])

The operation unwinds the sizes array and includes the array index of the array index in the new arrayIndex field. If the sizes field does not resolve to an array but is not missing, null, or an empty array, the arrayIndex field is null.

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }

preserveNullAndEmptyArrays

The following $unwind operation uses the preserveNullAndEmptyArrays option to include documents whose sizes field is null, missing, or an empty array.

db.inventory2.aggregate( [
   { $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }
] )

The output includes those documents where the sizes field is null, missing, or an empty array:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }

Group by Unwound Values

From the mongo shell, create a sample collection named inventory2 with the following documents:

db.inventory2.insertMany([
  { "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
  { "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
  { "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
  { "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
  { "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

The following pipeline unwinds the sizes array and groups the resulting documents by the unwound size values:

db.inventory2.aggregate( [
   // First Stage
   {
     $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true }
   },
   // Second Stage
   {
     $group:
       {
         _id: "$sizes",
         averagePrice: { $avg: "$price" }
       }
   },
   // Third Stage
   {
     $sort: { "averagePrice": -1 }
   }
] )
First Stage:

The $unwind stage outputs a new document for each element in the sizes array. The stage uses the preserveNullAndEmptyArrays option to include in the output those documents where sizes field is missing, null or an empty array. This stage passes the following documents to the next stage:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
Second Stage:

The $group stage groups the documents by sizes and calculates the average price of each size. This stage passes the following documents to the next stage:

{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Third Stage:

The $sort stage sorts the documents by averagePrice in descending order. The operation returns the following result:

{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }

See also

Unwind Embedded Arrays

From the mongo shell, create a sample collection named sales with the following documents:

db.sales.insertMany([
  {
    _id: "1",
    "items" : [
     {
      "name" : "pens",
      "tags" : [ "writing", "office", "school", "stationary" ],
      "price" : NumberDecimal("12.00"),
      "quantity" : NumberInt("5")
     },
     {
      "name" : "envelopes",
      "tags" : [ "stationary", "office" ],
      "price" : NumberDecimal("1.95"),
      "quantity" : NumberInt("8")
     }
    ]
  },
  {
    _id: "2",
    "items" : [
     {
      "name" : "laptop",
      "tags" : [ "office", "electronics" ],
      "price" : NumberDecimal("800.00"),
      "quantity" : NumberInt("1")
     },
     {
      "name" : "notepad",
      "tags" : [ "stationary", "school" ],
      "price" : NumberDecimal("14.95"),
      "quantity" : NumberInt("3")
     }
    ]
  }
])

The following operation groups the items sold by their tags and calculates the total sales amount per each tag.

db.sales.aggregate([
  // First Stage
  { $unwind: "$items" },

  // Second Stage
  { $unwind: "$items.tags" },

  // Third Stage
  {
    $group:
      {
        _id: "$items.tags",
        totalSalesAmount:
          {
            $sum: { $multiply: [ "$items.price", "$items.quantity" ] }
          }
      }
  }
])
First Stage

The first $unwind stage outputs a new document for each element in the items array:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Second Stage

The second $unwind stage outputs a new document for each element in the items.tags arrays:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Third Stage

The $group stage groups the documents by the tag and calculates the total sales amount of items with each tag:

{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }
{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") }
{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }
{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }
{ "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }

See also