Navigation
This is an upcoming (i.e. in progress) version of the manual.

$replaceWith (aggregation)

Definition

$replaceWith

New in version 4.2.

Replaces the input document with the specified document. The operation replaces all existing fields in the input document, including the _id field. With $replaceWith, you can promote an embedded document to the top-level. You can also specify a new document as the replacement.

The $replaceWith is an alias for $replaceRoot.

The $replaceWith stage has the following form:

{ $replaceWith: <replacementDocument> }

The replacement document can be any valid expression that resolves to a document. For more information on expressions, see Expressions.

Behavior

If the <replacementDocument> is not a document, $replaceWith errors and fails.

If the <replacementDocument> resolves to a missing document (i.e. the document does not exist), $replaceWith errors and fails. For example, create a collection with the following documents:

db.collection.insertMany([
   { "_id": 1, "name" : { "first" : "John", "last" : "Backus" } },
   { "_id": 2, "name" : { "first" : "John", "last" : "McCarthy" } },
   { "_id": 3, "name": { "first" : "Grace", "last" : "Hopper" } },
   { "_id": 4, "firstname": "Ole-Johan", "lastname" : "Dahl" },
])

Then the following $replaceWith operation fails because one of the document does not have the name field:

db.collection.aggregate([
   { $replaceWith: "$name" }
])

To avoid the error, you can use $mergeObjects to merge the name document with some default document; for example:

db.collection.aggregate([
   { $replaceWith: { $mergeObjects: [ { _id: "$_id", first: "", last: "" }, "$name" ] } }
])

Alternatively, you can skip the documents that are missing the name field by including a $match stage to check for existence of the document field before passing documents to the $replaceWith stage:

db.collection.aggregate([
   { $match: { name : { $exists: true, $not: { $type: "array" }, $type: "object" } } },
   { $replaceWith: "$name" }
])

Or, you can use $ifNull expression to specify some other document to be root; for example:

db.collection.aggregate([
   { $replaceWith: { $ifNull: [ "$name", { _id: "$_id", missingName: true} ] } }
])

Examples

$replaceWith an Embedded Document Field

Create a collection named people with the following documents:

db.people.insertMany([
   { "_id" : 1, "name" : "Arlene", "age" : 34, "pets" : { "dogs" : 2, "cats" : 1 } },
   { "_id" : 2, "name" : "Sam", "age" : 41, "pets" : { "cats" : 1, "fish" : 3 } },
   { "_id" : 3, "name" : "Maria", "age" : 25 }
])

The following operation uses the $replaceWith stage to replace each input document with the result of a $mergeObjects operation. The $mergeObjects expression merges the specified default document with the pets document.

db.people.aggregate( [
   { $replaceWith: { $mergeObjects:  [ { dogs: 0, cats: 0, birds: 0, fish: 0 }, "$pets" ] } }
] )

The operation returns the following results:

{ "dogs" : 2, "cats" : 1, "birds" : 0, "fish" : 0 }
{ "dogs" : 0, "cats" : 1, "birds" : 0, "fish" : 3 }
{ "dogs" : 0, "cats" : 0, "birds" : 0, "fish" : 0 }

$replaceWith a Document Nested in an Array

A collection named students contains the following documents:

db.students.insertMany([
   {
      "_id" : 1,
      "grades" : [
         { "test": 1, "grade" : 80, "mean" : 75, "std" : 6 },
         { "test": 2, "grade" : 85, "mean" : 90, "std" : 4 },
         { "test": 3, "grade" : 95, "mean" : 85, "std" : 6 }
      ]
   },
   {
      "_id" : 2,
      "grades" : [
         { "test": 1, "grade" : 90, "mean" : 75, "std" : 6 },
         { "test": 2, "grade" : 87, "mean" : 90, "std" : 3 },
         { "test": 3, "grade" : 91, "mean" : 85, "std" : 4 }
      ]
   }
])

The following operation promotes the embedded document(s) with the grade field greater than or equal to 90 to the top level:

db.students.aggregate( [
   { $unwind: "$grades" },
   { $match: { "grades.grade" : { $gte: 90 } } },
   { $replaceWith: "$grades" }
] )

The operation returns the following results:

{ "test" : 3, "grade" : 95, "mean" : 85, "std" : 6 }
{ "test" : 1, "grade" : 90, "mean" : 75, "std" : 6 }
{ "test" : 3, "grade" : 91, "mean" : 85, "std" : 4 }

$replaceWith a Newly Created Document

Example 1

An example collection sales is populated with the following documents:

db.sales.insertMany([
   { "_id" : 1, "item" : "butter", "price" : 10, "quantity": 2, date: ISODate("2019-03-01T08:00:00Z"), status: "C" },
   { "_id" : 2, "item" : "cream", "price" : 20, "quantity": 1, date: ISODate("2019-03-01T09:00:00Z"), status: "A" },
   { "_id" : 3, "item" : "jam", "price" : 5, "quantity": 10, date: ISODate("2019-03-15T09:00:00Z"), status: "C" },
   { "_id" : 4, "item" : "muffins", "price" : 5, "quantity": 10, date: ISODate("2019-03-15T09:00:00Z"), status: "C" }
])

Assume that for reporting purposes, you want to calculate for each completed sale, the total amount as of the current report run time. The following operation finds all the sales with status C and creates new documents using the $replaceWith stage. The $replaceWith calculates the total amount as well as uses the variable NOW to get the current time.

db.sales.aggregate([
   { $match: { status: "C" } },
   { $replaceWith: { _id: "$_id", item: "$item", amount: { $multiply: [ "$price", "$quantity"]}, status: "Complete", asofDate: "$$NOW" } }
])

The operation returns the following documents:

{ "_id" : 1, "item" : "butter", "amount" : 20, "status" : "Complete", "asofDate" : ISODate("2019-06-03T22:47:54.812Z") }
{ "_id" : 3, "item" : "jam", "amount" : 50, "status" : "Complete", "asofDate" : ISODate("2019-06-03T22:47:54.812Z") }
{ "_id" : 4, "item" : "muffins", "amount" : 50, "status" : "Complete", "asofDate" : ISODate("2019-06-03T22:47:54.812Z") }

Example 2

An example collection reportedsales is populated with the reported sales information by quarter and regions:

db.reportedsales.insertMany( [
   { _id: 1, quarter: "2019Q1", region: "A", qty: 400 },
   { _id: 2, quarter: "2019Q1", region: "B", qty: 550 },
   { _id: 3, quarter: "2019Q1", region: "C", qty: 1000 },
   { _id: 4, quarter: "2019Q2", region: "A", qty: 660 },
   { _id: 5, quarter: "2019Q2", region: "B", qty: 500 },
   { _id: 6, quarter: "2019Q2", region: "C", qty: 1200 }
] )

Assume that for reporting purposes, you want to view the reported sales data by quarter; e.g.

{ "_id" : "2019Q1", "A" : 400, "B" : 550, "C" : 1000 }

To view the data grouped by quarter, you can use the following aggregation pipeline:

db.reportedsales.aggregate( [
   { $addFields: { obj:  { k: "$region", v: "$qty" } } },
   { $group: { _id: "$quarter", items: { $push: "$obj" } } },
   { $project: { items2: { $concatArrays: [ [ { "k": "_id", "v": "$_id" } ], "$items" ] } } },
   { $replaceWith: { $arrayToObject: "$items2" } }
] )
First stage:

The $addFields stage adds a new obj document field that defines the key k as the region value and the value v as the quantity for that region. For example:

{ "_id" : 1, "quarter" : "2019Q1", "region" : "A", "qty" : 400, "obj" : { "k" : "A", "v" : 400 } }
Second stage:

The $group stage groups by the quarter and uses $push to accumulate the obj fields into a new items array field. For example:

{ "_id" : "2019Q1", "items" : [ { "k" : "A", "v" : 400 }, { "k" : "B", "v" : 550 }, { "k" : "C", "v" : 1000 } ] }
Third stage:

The $project stage uses $concatArrays to create a new array items2 that includes the _id info and the elements from the items array:

{ "_id" : "2019Q1", "items2" : [ { "k" : "_id", "v" : "2019Q1" }, { "k" : "A", "v" : 400 }, { "k" : "B", "v" : 550 }, { "k" : "C", "v" : 1000 } ] }
Fourth stage:

The $replaceWith uses the $arrayToObject to convert the items2 into a document, using the specified key k and value v pairs and outputs that document to the next stage. For example:

{ "_id" : "2019Q1", "A" : 400, "B" : 550, "C" : 1000 }

The aggregation returns the following document:

{ "_id" : "2019Q1", "A" : 400, "B" : 550, "C" : 1000 }
{ "_id" : "2019Q2", "A" : 660, "B" : 500, "C" : 1200 }

$replaceWith a New Document Created from $$ROOT and a Default Document

Create a collection named contacts with the following documents:

db.contacts.insert([
   { "_id" : 1, name: "Fred", email: "fred@example.net" },
   { "_id" : 2, name: "Frank N. Stine", cell: "012-345-9999" },
   { "_id" : 3, name: "Gren Dell", cell: "987-654-3210", email: "beo@example.net" }
]);

The following operation uses $replaceWith with $mergeObjects to output current documents with default values for missing fields:

db.contacts.aggregate([
   { $replaceWith: { $mergeObjects: [ { _id: "", name: "", email: "", cell: "", home: "" }, "$$ROOT" ] } }
])

The aggregation returns the following documents:

{ "_id" : 1, "name" : "Fred", "email" : "fred@example.net", "cell" : "", "home" : "" }
{ "_id" : 2, "name" : "Frank N. Stine", "email" : "", "cell" : "012-345-9999", "home" : "" }
{ "_id" : 3, "name" : "Gren Dell", "email" : "beo@example.net", "cell" : "", "home" : "987-654-3210" }